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4.3 Saltis often added to icy roads in winter. Could DTA be used to quantify the
effects of salt on ice? What results would you expect?
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Undoubtedly the most important and useful technique in solid state chemistry,
X-ray diffraction, has been in use since the early part of this century for the
fingerprint characterization of crystalline materials and for the determination of
their crystal structures. This chapter deals with the basic principles of diffraction
and describes in some detail the powder method and its applications. A brief
description of single crystal methods and their applications is given. The methods
used for solving crystal structures are largely omitted but sections are included
that together with Chapter 6 may help guide the reader through the crystallo-
graphic literature. It is important to be able to comprehend papers that report
new crystal structures without necessarily going into the mathematics of the
methods that are used to solve them.

5.1 X-rays and their generation

X-rays are electromagnetic radiation of wavelength ~ 1A (10~'°m). They
occur in that part of the electromagnetic spectrum between y-rays and the

K« X - rays

Fig. 5.1 Generation of Cu Ka X-rays. A 2p
electron falls into the empty 1s level ((J) and the
excess energy is released as X-rays
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ultraviolet. X-rays are produced when high energy charged particles, e.g.
electrons accelerated through 30000 V, collide with matter. The electrons are
slowed down or stopped by the collision and some of their lost energy is
converted into electromagnetic radiation. Such processes give ‘white radiation’,
X-rays which have wavelengths ranging upwards from a certain lower limiting
value. This lower wavelength limit corresponds to the X-rays of highest energy
and occurs when all the kinetic energy of the incident particles is converted into
X-rays. It may be calculated from the formula, 4, (A) = 12400, V, where V is the
accelerating voltage.

The X-rays which are used in almost all diffraction experiments are produced
by a different process that leads to monochromatic X-rays. A beam of electrons,
again accelerated through, say, 30kV is allowed to strike a metal target, often
copper. The incident electrons have sufficient energy to ionize some of the copper
Is (K shell) electrons (Fig. 5.1). An electron in an outer orbital (2p or 3p)
immediately drops down to occupy the vacant s level and the energy released in
the transition appears as X-radiation. The transition energies have fixed values
and so a spectrum of characteristic X-rays results (Fig. 5.2). For copper, the
2p—1s transition, called Ko, has a wavelength of 1.5418A and the 3p—1s
transition, K, 1.3922 A. The Ko transition occurs much more frequently than the
Kp transition and it is this more intense Ko radiation which results that is used in
diffraction experiments. In fact, the Ko transition is a doublet, Ka, = 1.54051 A
and Ka, = 1.54433 A, because the transition has a slightly different energy for the
two possible spin states of the 2p electron which makes the transition, relative to
the spin of the vacant 1s orbital. In some X-ray experiments, diffraction by the
Ka, and Ka, radiations is not resolved and a single line or spot is observed
instead of a doublet (e.g. in powder diffractometry at low angle). In other
experiments, separate diffraction peaks may be observed; if desired, this can be
overcome by removing the weaker Ka, beam from the incident radiation
(Sections 5.6.1 and 5.6.2).

The wavelengths of the Ku lines of the target metals commonly used for X-ray
generation are given in Table 5.1. The wavelengths are related to the atomic
number, Z, of the metal, by Moseley’s Law:

c\¥2
f2= (X) xZ (5.1

white 2
radiation

intensity

cut
off

. Fig. 5.2 X-ray emission spectrum of a metal, eg.
wavelength (A} copper
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Table 5.1 X-ray wavelengths of commonly used target materials
/

Target Ka, Ka, Ka* Filter
Cr 2.2896 2.2935 2.2909 A%
Fe 1.9360 1.9399 1.9373 Mn
Cu 1.5405 1.5443 1.5418 Ni
Mo 0.7093 0.7135 0.7107 Nb.
Ag 0.5594 0.5638 0.5608 Pd

* & is the intensity-weighted average of a, and «,.

where f is the frequency of the Ka line. Hence the wavelength of the Ka line
decreases with increasing atomic number.

The X-ray emission spectrum of an element such as copper (Fig. 5.2) has two
main features. The intense, monochromatic peaks, caused by electronic tran-
sitions within the atoms, have wavelengths that are characteristic of the element
i.e. copper. These monochromatic peaks are superposed on a background of
‘white’ radiation, mentioned earlier, which is produced by the general interaction
of high velocity electrons with matter. In order to generate the characteristic
monochromatic radiation, the voltage used to accelerate the electrons needs to be
sufficientlyhigh ( £ 10k V) so that ionization of the copper 1s electrons may occur.

In the generation of X-rays (Fig. 5.3), the electron beam, provided by a heated
tungsten filament, is accelerated towards an anode by a potential difference of
~ 30kV. The electrons strike the target, a piece of copper fixed to the anode,and a
spectrum of X-rays, such as shown in Fig. 5.2, is emitted. The chamber, known as
the X-ray tube, is evacuated in order to avoid collisions between air particles and
either the incident electrons or emitted X-rays. The X-rays leave the tube through
‘windows’ made of beryllium. The absorption of X-rays on passing through

materials depends on the atomic weight of the elements present in the material.
~ Beryllium with an atomic number of 4 is, therefore, one of the most suitable
window materials. For the same reason, lead is a very effective material for
shielding X-ray equipment and absorbing stray radiation. While an X-ray tube is
in operation, continuous cooling of the anode is necessary. Only a small fraction
of the energy of the incident electron beam is converted into X-rays. Most of the

‘Be
window

-

target.. W fitament

vacuum

X-rays

Fig. 5.3 Schematic design of a filament X-
ray tube
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energy is converted into heat and the anode would soon melt if it were not cooled.

For most diffraction experiments, a monochromatic beam of X-rays is desired
and not a continuous spectrum. In the spectrum of X-rays emitted by copper (or
any metal), the Ka line(s) is the most intense and it is desired to filter out all the
other wavelengths, leaving the Ka line for diffraction experiments. For copper
radiation, a sheet of nickel foil is very effective in carrying out this separation. The
energy required to ionize 1s electrons of nickel corresponds to a wavelength of
1.488 A, which lies between the values for the Ka and KB lines of the copper
emission spectrum. Cu Kf radiation, therefore, has sufficient energy to ionize 1s
electrons of nickel whereas Cu Ka radiation does not. Nickel foil is effective in
absorbing the Cu Kf radiation and most of the white radiation, leaving a
monochromatic, reasonably clean beam of Ka radiation. A lighter element, such
as iron, would absorb Ka radiation as well as KB, because its absorption edge is
displaced to higher wavelengths. On the other hand, a heavier element, such as
zinc, would transmit both Ka and K f radiations while still absorbing much of the
higher energy white radiation. The atomic number of the element in the filter
generally is one or two less than that of the target material, (Table 5.1). An
alternative method of obtaining monochromatic X-rays uses a single crystal
monochromator and is discussed in Section 5.6.2.

5.2 Diffraction

5.2.1 An optical grating and diffraction of light

As an aid to understanding the diffraction of X-rays by crystals, let us consider
the diffraction of light by an optical grating. This gives a 1-dimensional analogue
of the three-dimensional process that occurs in crystals.

An optical grating may consist of a piece of glass on which have been ruled a
large number of accurately parallel and closely spaced lines. The separation of the
lines should be a little larger than the wavelength of light, say 10000A. The
grating is shown in projection as a row of points in Fig. 5.4. Consider what
happens to a beam of light which hits the grating perpendicular to the plane of the
grating. A piece of glass without the lines would simply transmit the light, but in
the grating the lines act as secondary point (or, rather, line) sources of light and re-

Fig. 5.4 Lines on an optical grating act as secondary sources of
light
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Fig. 5.5 Constructive interference in
directions 1 and 2

radiate light in all directions. Interference then occurs between the waves
originating from each line source. In certain directions, adjacent beams are in
phase with each other and constructive interference occurs to give a resultant
diffracted beam in that direction. Two such directions are shown in Fig. 5.5. In
direction 1, parallel to the incident beam, the diffracted beams are obviously in
phase. In direction 2, the beams are also in phase although beam B is now exactly
one wavelength behind beam A. At directions between ! and 2, beam B lags
behind beam A by a fraction of one wavelength, and destructive interference
occurs. For a certain direction, 3, B is exactly half a wavelength behind A and
complete destructive interference or cancellation occurs. For other directions
between 1 and 2, the destructive interference is only partial. Thus, directions 1 and
2 have maximum light intensity and this falls off gradually to zero as the angle
changes to direction 3. In the optical grating, however, there are not just two
parallel diffracted beams A and B but several hundred or thousand, one for each
line on the grating, This causes the resultant diffracted beams to sharpen
enormously after interference so that intense beams occur in directions 1 and 2
with virtually no intensity over the whole range of directions between 1 and 2.

The directions, such as 2, in which constructive interference occurs are
governed by the wavelength of the light, 4, and the separation, a, of the lines on the
grating. Consider the diffracted beams 1 and 2 (Fig. 5.6) which are at an angle, ¢,
to the direction of the incident beam. If 1 and 2 are in phase with each other, the

Fig. 5.6 Diffraction of light by an
optical grating
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distance AB must equal a whole number of wavelengths; i.e.

AB=),24,...,nk
But
AB =asin ¢
Therefore,
asin ¢ =nl 5.2

This equation gives the conditions under which constructive interference
occurs and relates the spacing of the grating to the light wavelength and the
diffraction order, n. Hence, depending on the value of a sin ¢, one or more
diffraction orders, corresponding to n = 1, 2, etc., may be observed.

We can now understand why the separation of the lines on the grating must be
of the same order of magnitude as, but somewhat larger than, the wavelength of
light. The condition for the first order diffracted beam to occur is a sin ¢ = A. The
maximum value of sin ¢ is 1, corresponding to ¢ = 90° but realistically, in order
to observe first order diffraction, sin ¢ < 1 and, therefore, a > 1. If a < 4, only the
zero order direct beam is observable.

If, on the other hand, a » 4, individual diffraction orders(n = 1,2, 3,.. ., etc.)are
so close together as to be unresolved and, effectively, a diffraction continuum
results. This is because, for large values of g, sin ¢ and, hence, ¢ must be very
small. Therefore ¢, ; £ 0 and the first order beam is not distinguishable from the
primary beam. Visible light has wavelengths in the range 4000 to 7000 A and so,
in order to observe well-separated spectra, grating spacings are usually 10000 to
20000 A.

The other condition to be observed in the construction of an optical grating is
that the lines should be accurately parallel. If this were not so, ¢ would vary over
the grating and the diffraction spectra would be blurred or irregular and of poor
quality generally.

5.2.2 Crystals and diffraction of X-rays

By analogy with the diffraction of light by an optical grating, crystals, with
their regularly repeating structures, should be capable of diffracting radiation
that has a wavelength similar to the interatomic separation, ~ 1 A. Three types of
radiation are used for crystal diffraction studies: X-rays, electrons and neutrons.
Of these, X-rays are by far the most useful but electron and neutron diffraction
both have important specific applications and are discussed in Chapter 3.

The X-ray wavelength commonly employed is the characteristic Ka radiation,
A=1.5418A, emitted by copper. When crystals diffract X-rays, it is the atoms or
ions which act as secondary point sources and scatter the X-rays; in the optical
grating, it is the lines scratched or ruled on the glass surface which cause
scattering.

Historically, two approaches have been used to treat diffraction by crystals.
These are as follows.
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5.2.2.1 The Laue equations

Diffraction from a hypothetical 1-dimensional crystgl, constituthg a row of
atoms, may be treated in the same way as diffraction of light by an opt}cal gra'tmg
becau;e, in projection, the grating is a row of points. An equation 18 lobtallxlle:/l
which relates the separation, a, of the atoms in the row, the X-ray wavelength, 4,
and the diffraction angle, ¢; ie.

asin¢ = ni

A real crystal is a three-dimensional arrangement of atoms for which three

Laue equations may be written:
a,sing, =ni
a,sing, =ni
a,sin gy =ni

Each equation corresponds to the diffraction condition for rows pf atodms in
one particular direction and three directions or axes are needed in order ;)
represent the atomic arrangement in the crystal. For a dlgfracted beam to occur,

1 isfied simultaneously.
these three equations must all be satis '
The Laue equations provide a rigorous and mathematically correct way to

i to use.
1 i tals. The drawback is that they are cumbersgme
D oy ot n Bragg’s Law, is much simpler and

No further discussion of the

descri : h
The alternative theory of diffraction, based o

is used almost universally in solid state chemistry.
Laue equations is given in this book.

5.2.2.2 Bragg’s Law

The Bragg approach to diffraction is to regard

planes such a0 em i
reflected off a plane with the angle ol reflec .
the rest are transmitted to be subsequently reflected by succeeding planes.

The derivation of Bragg’s Law is shown in Fi :
are reflected from adjacent planes, A and B, wit

“ 2
AV

i X : 7

B

Fig. 5.7 Derivation of Bragg's Law for X-ray
diffraction

crystals as built up in layers or

that each acts as a semi-transparent mirror. Some of the ?(-rays are
ion equal to the angle of incidence, but

g. 5.7. Two X-ray beams, 1and 2, .;f
hin the crystal and we wish to b
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know under what conditions the reflected beams 1’ and 2’ are in phase. Beam 22’
has to travel the extra distance xyz as compared to beam 11’, and for 1’ and 2’ to
be in phase, distance xyz must equal a whole number of wavelengths. The
perpendicular distance between pairs of adjacent planes, the d-spacing, d, and the
angle of incidence, or Bragg angle, 0, are related to the distance xy by

xy=yz=dsinf

Thus
xyz = 2dsin @
But
xXyz =nl
Therefore
2dsin 6 = ni Bragg’s Law (5.3)

When Bragg’s Law is satisfied, the reflected beams are in phase and interfere
constructively. At angles of incidence other than the Bragg angle, reflected beams
are out of phase and destructive interference or cancellation occurs. In real
crystals, which contain thousands of planes and not just the two shown in
Fig. 5.7, Bragg’s Law imposes a stringent condition on the angles at which
reflection may occur. If the incident angle is incorrect by more than a few tenths of
a degree, cancellation of the reflected beams is usually complete.

For a given set of planes, several solutions of Bragg’s Law are usually possible,
forn=1,2,3, etc. It is customary, however, to set n equal to 1 and for situations
where, say, n = 2, the d-spacing is instead halved by doubling up the number of
planes in the set; hence n is kept equal to 1. (Note that 24 = 2d sin @ is equivalent
to A=2(d/2)sin 6.

It is difficult to give an explanation of the nature of the semi-transparent
layers or planes that is immediately convincing. This is because they are a concept
rather than a physical reality. Crystal structures, with their regularly repeating
patterns, may be referred to a three-dimensional grid and the repeating unit of the
grid, the unit cell (see the next section), can be found. The grid may be divided up
into sets of planes in various orientations and it is these planes which are
considered in the derivation of Bragg’s Law. In some cases, with simple crystal
structures, the planes do correspond to layers of atoms, but this is not generally
the case.

Some of the assumptions upon which Bragg’s Law is based may seem to be
rather dubious. For instance, it is known that diffraction occurs as a result of
interaction between X-rays and atoms. Further, the atoms do not reflect X-rays
but scatter or diffract them in all directions. Nevertheless, the highly simplified
treatment that is used in deriving Bragg’s Law gives exactly the same answers as
are obtained by a rigorous mathematical treatment. We therefore happily use
terms such as reflexion (often deliberately spelt incorrectly!) and bear in mind
that we are fortunate to have such a simple and picturesque, albeit inaccurate,
way to describe what in reality is a very complicated process. Further discussion
of Bragg’s Law and diffraction must wait until we have considered some basic
rules and definitions about the symmetry and structures of crystals.
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5.3 Definitions

5.3,1 Unit cells and crystal systems

Crystals are built up of a regular arrangement of atoms ip three d1men§1onlsl;

this arrangement can be represented by a repeat unit or motif called the unit cell.
The unit cell is defined as the smallest repeating unit vxfhich shows the full symmetry
of the crystal structure. Let us see exactly what 'thls means, flrst of all in t.wlo
dimensions. A section through the NaCl structure is shown in Fig. 5.2'3(2.1). Possible
repeating units are given in Fig. 5.8(b) to (e). In ea_ch, the repeat unlt‘ isa §q1;are
and adjacent squares share edges and corners. Adjgcent squares are 1dent1ca}; as
they must be by definition; thus, all the squares in (b) have C1~ ions at t eér
corners and centres. The repeat units in (b), (c) and (d) are all of tl'le same size and,
in fact, differ only in their relative position. This brings us to an important pont.
The choice of origin of the repeating unitisto a certa!in extent a matter of personal
taste, even though the size and shape or orientation of the cell are fixed. Thg
repeat unit of NaClis usually chosen as either (b) or (c) rather t}_1an (d b_ecause itis
easier to draw the unit and visualize the structure as a whole if the unit contains
atoms or ions at special positions such as corners, edge centres, etc. Another
guideline is that the origin is usually chosen so that the symmetry of the structure
is evi ection 5.3.3).
° i:ci;gt I(lipothetical z:ase that two-dimensional (':rystals o'f NaCl F:ould Ee
formed, the repeat unit shown in Fig. 5.8(¢) or its equwalegt, with chlqrme at the
corners and sodium in the middle, would be the correct unit. Comparing G ansl,
for example, (b), both are square and show the symmetry of thf: §tructure; as (e 1151
half the size of (b), (€) would be preferred according to the definition of the unit ce

@)
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0000000
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@
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Fig. 5.8 (a) Section through the NaCl structure, shoyving (b)to(e)
possible repeat units and (f) incorrect units
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Na—Cl—Na
c Na o
Na—~Cl—Na
| ¢ qu ol
i Na: Cl Na
Cl iNa Cl

¢l Na |kl

Na—Cl—Na Fig. 5.9 Cubic unit cell of NaCl, a=b=c

“Na

given above. In three dimensions, however, the unit cell of NaCl is based on (b)
rather than (e) because only (b) shows the cubic symmetry of the structure
(Section 5.3.3). '

In Fig. 5.8(f) are shown two examples of what is not a repeat unit. The top part
of the diagram contains isolated squares whose area is one quarter of the squares
in(b). It is true that each square is identical but it is not permissible to isolate unit
cells or areas from each other, as appears to happen here. The bottom part of the
diagram contains units that are not identical; thus square 1 has a sodium in its top
right corner whereas 2 has a chlorine in this position.

The unit cell of NaCl in three dimensions in shown in Fig. 5.9; it contains
Na™ ions at the corners and face centre positions with Cl~ ions at the edge centres
and body centre. Each face of the unit cell looks like the unit area shown in
Fig. 5.8(c). As in the two-dimensional case, the choice of origin is somewhat
arbitrary and an equally valid unit cell could be chosen in which the Na* and
Cl” ions were interchanged. The unit cell of NaCl is cubic. The three edges of the
cell, a, b and c are equal in length. The three angles of the cell « (between b and c), B
(between a and ¢) and y (between a and b) are all equal to 90°. A cubic unit cell also
possesses certain symmetry elements, and these symmetry elements together with
the shape define the cubic unit cell.

The seven crystal systems listed in Table 5.2 are the seven independent unit cell
shapes that are possible in three-dimensional crystal structures. Each crystal
system is governed by the presence or absence of symmetry in the structure and
the essential symmetry for each is given in the third column. Let us next deal with

symmetry because it is of fundamental importance in solid state chemistry and,
especially, in crystallography.

5.3.2 Symmetry, point symmetry and point groups

Symmetry is most easily defined by the use of examples. Consider the silicate
tetrahedron shown in Fig. 5.10(a). If it is rotated about an axis passing along one
of the Si—O bonds, say the vertical one, then every 120° the tetrahedron finds
itself in an identical position. Effectively, the three basal oxygens change position
with each other every 120°. During a complete 360° rotation, the tetrahedron
passes through three such identical positions. The fact that different (ie. >1)
identical orientations are possible means that the SiO, tetrahedron possesses
symmetry. The axis about which the tetrahedron may be rotated is called a
symmetry element and the process of rotation a symmetry operation.
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Table 5.2 The seven crystal systems

Space lattices

Essential symmetry

Unit cell shape'

Crystal system

.1, AB or C)

P, F

Three twofold axes or mirror planes

Four threefold axes
One sixfold axis

One fourfold axis

90°
90°
90°

Y
Y
Y

=
a=p
a=p
a=f

a=p
«=p

.8 o0

C.

a=b=

a=b=*c
a¥b+c
a=b=%c

IV -8

One twofold axis or mirror plane

One threefold axis
None

One threefold axis

90°,y = 120°

90°,y = 120°
y#90°

PR

b+c
=c

b
atbtc, a=y=90°p%+90°

atb+c, atpFy+90°

a
a

¢ cell are used in the literature.- The one given here,

®)

Monoclinic*

Orthorhombic
Triclinic

Tetragonal
Hexagonal
Trigonal (a)

Cubic

90°, y 4 90°.

say, the unit cell is geometrically cubic but does not possess

>

which is most commonly used, and the othera+ b+c,a=§

mes, crystals possess pseudo-symmetry in which

and the symmeiry is lower,

sarily equal to. Someti

f
s "
the essential symmetry elements for cubic symmetry,

;iz

* Two settings of the monoc
* The symbol + means not n

perhaps tetragonal.
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+n:3 \Pm 2 Fig.5.10 (a) Threefold and (b) twofold rotation axes

The symmetry elements that are important in crystallography are listed in
Table 5.3. There are two nomenclatures for labelling symmetry elements, the
Hermann—Mauguin system used in crystallography and the Schonflies system
used in spectroscopy. It would be ideal if there was only one system which
everybody used, but this is unlikely to come about since (a) both systems are very
well established and (b) crystallographers require elements of space symmetry
that spectroscopists do not, and vice versa, (c) spectroscopists use a more
extensive range of point symmetry elements than crystallographers.

The symmetry element described above for the silicate tetrahedron is a rotation
axis, with symbol n. Rotation about this axis by 360/n degrees gives an identical
orientation and the operation is repeated n times before the original con-
figuration is regained. In this case, n = 3 and the axis is a threefold rotation axis.
The SiO, tetrahedron possesses four threefold rotation axes, one in the direction
of each Si—O bond.

When viewed from another angle, SiO, tetrahedra possess twofold rotation
axes (Fig. 5.10b) which pass through the central silicon and bisect the O—Si—OQ
bonds. Rotation by 180° leads to an indistinguishable orientation of the
tetrahedron. The tetrahedron possesses three of these twofold axes.(According to
the Schonflies system, there are six twofold axes; each axis is counted twice, to
include the two possible directions of each axis, i.e. up or down). The identity
operation corresponds to n = 1 (rotation by 360°). It is apparently trivial, being

equivalent to doing nothing, but it is important in the application of group theory
to point symmetry.

Table 5.3 Symmetry elements

Notation
Symmetry Hermann—Mauguin Schonflies
element (crystallography) (spectroscopy)
Mirror plane m 0,0y
Rotation axis n(=2,3,4,6) C,(C,,C,,etc)
Point Inversion axis (=1, 2, etc.) —
symmetry Alternating axis — S.(S,,5,,etc)
(rotoreflection)
Centre of 1 i
symmetry
Space {Glide plane nd, ab,c —
symmetry Screw axis 2,,3,,etc. —
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Fig. 5.11 (a) The impossibility of forming a close
packed array of pentagons. (b) A close packed layer of
hexagons.

Crystals may display rotational symmetries of 1,2, 3,4 and 6. Others., such as
n=>5,7, are never observed. This is not to say that molecules which have
pentagonal symmetry cannot exist in the crystalline state. They can, of course,‘bl.lt
their fivefold symmetry cannot be exhibited by the crystal as a whole. This is
shown in Fig. 5.11(a), where a fruitless attempt has been made to p.ack together
pentagons to form a complete layer; for hexagons with sixfold rotation axes(b) a
close packed layer is easily produced. '

A mirror plane, m, exists when two halves of a molecule or ion can be
interconverted by carrying out the imaginary process of reflection across t_he
mirror plane. The silicate tetrahedron possesses three mirror plant?s, one of which
is shown in Fig. 5.12(a). The silicon and two oxygens lie on the mirror plane and
are unaffected by the process of reflection. The other two oxygens are
interchanged on reflection.

The centre of symmetry, 1, exists when any part of a molecule or ion can be

reflected through this centre of symmetry, which is a point, and an idegtical
arrangement found on the other side. An Si ,08~ group which has a linear Si-O—

0 (b)
© |s OOQ\Si —0 —S5i °
J 0
o/?\o o/ _/ \o

-

Fig. 5.12 Symmetry elements: (a) mirror
plane, (b) centre of symmetry, (c) absence
of centre of symmetry in a tetrahedron,
(d) centre of symmetry in an octahedron
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3 Fig. 5.13 Fourfold inversion axis

Si bridge (it is not usually linear) and with the two SiO, tetrahedra in the
staggered conformation has a centre of symmetry at the bridging oxygen
(Fig. 5.12b). If a line is drawn from any oxygen, through the centre of symmetry
and extended an equal distance on the other side, it terminates at another oxygen.
Asingle tetrahedron (e.g. SiO,) does not have a centre of symmetry (located at Si);
the two orientations of the tetrahedra in Fig. 5.12(c) are not identical. On the
other hand an octahedron, e.g. AlQOy, is centrosymmetric (Fig. 5.12d).

The inversion axis, 7, is a combined symmetry operation involving rotation
(according to n) and inversion through the centre. A 4 (fourfold inversion) axis is
shown in Fig. 5.13. The first stage involves rotation by 360/4 = 90° and takes, for
example, oxygen 1 to position 2. This is followed by inversion through the centre,
at Si, and leads to the position of oxygen 3. Oxygens 1 and 3 are therefore related
by a 4 axis. Possible inversion axes in crystals are limited to 1,2, 3,4 and 6 for the
same reason that only certain pure rotation axes are allowed. The onefold
inversion axis is simply equivalent to the centre of symmetry and the twofold
inversion axis is the same as a mirror plane perpendicular to that axis.

The symmetry elements discussed so far are elements of point symmetry. For all
of them, at least one point stays unchanged during the symmetry operation, i.e. an
atom lying on a centre of symmetry, a rotation axis or a mirror plane does not
move during the respective symmetry operations. Finite-sized molecules can only
possess point symmetry elements, whereas crystals may have extra symmetries
that include translation steps as part of the symmetry operation. Many molecules
and crystals possess more than one element of point symmetry, but the number of
combinations of symmetry elements that may occur in crystals is limited to 32.
These are known as the crystallographic point groups.

5.3.3 Symmetry: the choice of unit cell and crystal system

The geometric shapes of the various crystal systems (unit cells) are listed in
Table 5.2. These shapes do not define the unit cell; they are merely a consequence
of the presence of certain symmetry elements. A cubic unit cell is defined as one.
having four three-fold symmetry axes (Fig. 5.14) and it is an automatic
consequence of this condition that a=b=c and a« = =y =90°. The essential
symmetry elements by which each crystal system is defined are listed in Table 5.2.
In most crystal systems, other symmetry elements are also present. For instance,
cubic crystals have many others, including three four-fold axes passing through
the centres of each pair of opposite cube faces (Fig. 5.14).
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Fig. 5.14 Two-, three- and four-
fold axes of a cube

The tetragonal unit cell is characterized by a single fourfold axis and is
exemplified by the structure of CaC,. This is related to the NaCl structure but,
because the carbide ion is cigar-shaped rather than spherical, one of the cell axes
becomes longer than the other two (Fig. 5.15a). A similar tetragonal cell may be
drawn for NaCl by replacing Na for Ca and Cl for C, ;it occupies half the volume
of the true, cubic unit cell (Fig. 5.15b). The choice of a tetragonal unit cell for
NaCl is rejected because it does not show the full cubic symmetry of the crystal
(see Fig. 5.8 and the discussion with it).

The trigonal system is characterized by a single threefold axis. Its shape can be
derived from that of a cube by stretching or compressing the cube along one of its
body diagonals (Fig. 5.16). The threefold axis parallel to this body diagonal is
retained but those along the other body diagonal directions are all destroyed. All
three cell edges remain the same length and all three angles stay the same but are
not equal to 90°. It is possible to describe such a trigonal cell for NaCl with a =
B =7y = 60° where Na* ions are at the corners and a Cl~ ion is in the body centre,
but this is again unacceptable because NaCl has symmetry higher than trigonal.
NaNO, has a structure that may be regarded as a trigonal distortion of the NaCl
structure: instead of spherical Cl™ ions, it has triangular nitrate groups, and the
presence of these effectively causes a compression along one body diagonal (or
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Fig.5.15 (a) Tetragonal unit cell of CaC,;
(b) relation between tetragonal and cubic cells for
NaCl
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Fig. 5.16 Derivation of a trigonal unit cell from a cubic cell

rather an expansion in the plane perpendicular to the diagonal). All fourfold
symmetry axes and all but one of the threefold axes are destroyed.

The trigonal crystal system is one of the most difficult to work with. The
trigonal cell can be defined with either rhombohedral axes (as above) or with
hexagonal axes (Table 5.2). There has been a controversy among crystallog-
raphers lasting for many years over the exact status of the trigonal crystal system.
Some claim that it should not be regarded as a separate system but should be
included as a subsystem of the hexagonal system. The majority accord it with
independent status, however, and it has been treated as such in Table 5.2.

The hexagonal crystal system is discussed in some detail in Chapter 7, where a
drawing of the hexagonal unit cell is given in Fig. 7.6. :

The orthorhombic unit cell may be regarded as something like a shoebox in
which the angles are all 90° but the sides are of unequal length. It usually
possesses several mirror planes of symmetry and several twofold axes; the
minimum requirement for orthorhombic symmetry is the presence of three
mutually perpendicular mirror planes or twofold axes.

The monoclinic unit cell may be regarded as derived from our orthorhombic
shoebox by a shearing action in which the top face is partially sheared relative to
the bottom face and in a direction parallel to one of the box edges. As a
consequence, one of the angles departs from 90° and most of the symmetry is lost,
apart from a mirror plane and/or a single twofold axis.

The triclinic system possesses no symmetry at all, which is reflected in the shape
of the unit cell.

5.3.4 Space symmetry and space groups

The symmetry of finite-sized molecules is limited to the elements of point
symmetry whereas crystals, with their infinite repeating structures (for all
practical purposes), may also possess elements of space symmetry. This involves a
combination of point symmetry elements—rotation or mirror plane reflection—
with incremental translational steps through the structure.

The screw axis combines translation and rotation; the atoms or ions in a
crystal which possesses screw axes appear to lie on spirals about these axes. A
schematic example is shown in Fig. 5.17(a). The symbol for a screw axis, Xy,
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Fig. 5.17 Arrangements of coins with heads (H) and tails (ﬂ,
illustrating (a) a 2, screw axis parallel to a and (b) an a glide
plane perpendicular to b
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indicates a translation by the fraction Y/X of the unit cell edge in the direction of
. 1 o
the screw axis, together with a simultaneous rotation by X x 360° about the screw

axis. Thus, a 4, axis parallel to a involves translation by a/2 and rotation by 90°,
and this process is repeated twice for every unit cell. .

The glide plane combines translation and reflection and is shown schematically
in Fig. 5.17(b). Transiation may be parallel to any of the unit cell axes(a, b, c), toa
face diagonal (n) or to a body diagonal (d). The a, b, c and n glide planes all.have a
translation step of half the unit cell in that direction; by definition, the d glide k}as
a translation which is a quarter that of the body diagonal. For the'axial glide
planes a, b and ¢, it is important to know both the direction of translation and the
reflection plane, e.g. an a glide may be perpendicular to b (i.e. in the ac plane) or
perpendicular to c. .

A fundamental characteristic of crystals and their structures fs the space group.
This is a set of symbols which summarizes information about he c.ryst.al system,
lattice type and elements of point and space symmetry. Combination of .the
fourteen Bravais lattices with possible point and space symmetry elements gives
rise to a total of 230 possible space groups. Chapter 6 is devoted to space groups
and the relation between space groups and crystal structure.

5.3.5 Lattice, Bravais lattice

It is very useful to be able to represent the manner of repetition of atoms, ions
Y e Ao oo ~f it thae array being called a lattice and
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Na Cl Na CiI Na B U .
Cl Na Ct Na ClI .
Na Cl Na Cl Na \./ A
Cl Na Cl Na Cl . .
Na Cl Na Cl Na .
() (b)

Fig. 5.18 (a) Representation of the NaCl structure in two
dimensions by (b) an array of lattice points

the points lattice points. The section of the NaCl structure (Fig. 5.18a) may be
represented by an array of points(b); each point represents one Na™* and one C1~
but whether the point is located at Na*, at C1~ or in between is irrelevant. The
unit cell may be constructed by linking up the lattice points; two ways of doing
this, A and B, are shown in (b). A cell such as B which contains lattice points only
at the corners is Primitive, P, whereas a cell such as A which contains additional
lattice points is centred. Several types of centred lattice are possible. The face
centred lattice, F, contains additional lattice. points in the centre of each face
(Fig. 5.19a); NaCl s face centred cubic. A side centred lattice contains extra lattice
points on only one pair of opposite faces, e.g. C-centred (Fig: 5.19b), whereas a
body centred lattice, 1, has an extra lattice point at the body centre (Fig. 5.19¢). a-
iron is body centred cubic because it has a cubic unit cell with iron atoms at the
corner and body centre positions. CsCl s also cubic with cesium atoms at corners
and chlorine atoms at the body centre (or vice versa), but it is primitive. This is
because, in order for a lattice to be body centred, the atom or group of atoms
which are located at or near the corner must be identical to those at or near the
body centre position. _

The combination of crystal system and lattice type gives the Bravais lattice of a
structure. There are fourteen possible Bravais lattices. They can be deduced from
Table 5.2 by taking the different allowed combinations of crystal system and
space lattice, e.g. primitive monoclinic, C-centred monoclinic and primitive
triclinic are three of the fourteen possible Bravais lattices. The lattice type plus

(a) (b) (c)
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Fig. 5.19 (a) Face centred, (b) side centred and (¢) body centred lattices
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unit cell combinations which are absent from the table either (a) would violate
symmetry requirements, e.g. a C-centred lattice cannot be cubic because it would
not have the necessary threefold axes, or (b) may be represented by a smaller,
alternative cell, e.g. a face centred tetragonal cell can be redrawn as a body
centred tetragonal cell; the symmetry is still tetragonal but the volume is halved
(Fig. 5.15b).

5.3.6 Lattice planes, Miller indices and directions

The concept of lattice planes (Section 5.2.2.2) is apparently straightforward but
is a source of considerable confusion because there are two separate ideas which
can easily become mixed. Any close packed structure, such as metal structures,
jonic structures— NaCl, CaF ,, etc.—may, in certain orientations, be regarded as
being built up of layers or planes of atoms stacked to form a three-dimensional
structure. These layers are often related in a simple manner to the unit cell of the
crystal such that, for example, a unit cell face may coincide with a layer of atoms.
The reverse is not necessarily true, however, especially in more complex
structures, and, for example, unit cell faces or simple sections through the unit cell
often do not coincide with layers of atoms in the crystal. Lattice planes, which are
a concept introduced with Bragg’s Law, are defined purely from the shape and
dimensions of the unit cell. Lattice planes are entirely imaginary and simply
provide a reference grid to which the atoms in the crystal structure may be
referred. Sometimes, a given set of lattice planes coincides with layers of atoms,
but not usually.

Consider the two-dimensional array of lattice points shown in Fig. 5.20. This
array of points may be divided up into many different sets of rows and for each set
there is a characteristic perpendicular distance, d, between pairs of adjacent rows.
In three dimensions, these rows become planes and adjacent planes are
separated by the interplanar d-spacing, d. Bragg’s Law treats X-ray as being
diffracted from these various sets of lattice planes and the Bragg diffraction angle,
6, for each set is related to the d-spacing by Bragg’s Law (Section 5.2.2.2).

Lattice planes are labelled by assigning three numbers known as M. iller
indices to each set. The derivation of Miller indices is illustrated in Fig. 5.21. The

origin of the unit cell is at point O and two planes are shofln which are parallel

?Q/éé/iéé/
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and pass obliquely through the unit cell. A third plane in this set must, by
definition, pass through the origin. Each of these planes continues out to the
surface of the crystal and in so doing cuts through many more unit cells; also,
there are many more planes in this set parallel to the two shown, but which do not
pass through this particular unit cell. In order to assign Miller indices to a set of
planes, first consider that plane which is adjacent to the one that passes through
the origin. Second, find the intersection of this plane on the three axes of the cell
and write these intersections as fractions of the cell edges. The plane in question
cuts the x axis at a/2, the y axis at b and the z axis at ¢/3; the fractional
intersections are 3, 1, 1. Third, take reciprocals of these fractions; this gives (213).
These three integers are the Miller indices of the plane and all other planes that
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Fig. 5.22 Examples of Miller indices: (a)
(101), (b (100),  (9)(200),  (d) (h0O),
(e) labelling of axes in a hexagonal cell,

() '(T.2T0) plane, origin at solid circle, po-
sitive a directions indicated by arrows
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are parallel to it and are separated from adjacent planes by the same d-spacing.

Some other examples are shown in Fig. 5.22. In (a), the shaded plane cuts x, y
and z at la, coband 1¢, ie. the plane is parallel to b. Taking reciprocals of 1, co and
1 gives us (101) for the Miller indices. A Miller index of 0 means, therefore, that the
plane is parallel to that axis. In Fig. 5.22(b), the planes of interest comprise
opposite faces of the unit cell. We cannot directly determine the indices of plane
(1) as it passes through the origin. Plane (2) has intercepts of 1a, co b and cocand
Miller indices of (100). Figure 5.22(c) is similar to (b) but there are now twice as
many planes as in (b). To find the Miller indices, consider plane (2) which is the
one that is closest to the origin but without passing through it. Its intercepts are 4
o and oo and the Miller indices are (200). A Miller index of 2 therefore indicates
that the plane cuts the relevant axis at half the cell edge. This illustrates an
important point. After taking reciprocals, do not divide through by the highest
common factor. A common source of error is to regard, say, the (200) set of planes
as those planes interleaved between the (100) planes, to give the sequence (100),
(200), (100), (200), (100),.. ... The correct labelling is shown in Fig. 5.22(d). Ifextra
planes are interleaved between adjacent (100) planes then all planes are labelled
as (200).

The general symbol for Miller indices is (hkl). It is not necessary to use commas
to separate the three letters or numbers and the indices are enclosed in curved
brackets. The symbol { } is used to indicate sets of planes that are equivalent;
for example, the sets(100),(010) and (001) are equivalent in cubic crystals and may
be represented collectively as {100}.

Miller indices of planes in hexagonal crystals are an exception in that four
indices are-often used (hkil). The value of the i index is derived from the
reciprocal of the fractional intercept of the plane in question on the a, axis
(Fig. 5.22¢) in exactly the same way that the other indices are derived. The i index
is, to a certain extent, a piece of redundant information because the relation h +
k + i = 0 always holds, as in, for example, (1011), (2110), (1211), etc. A bar over an
index means that the opposite or negative direction of the corresponding axis was
used in defining the indices (see Section 5.3.10). In Fig. 5.22(f), the (1210) plane is
shown as an example. Sometimes hexagonal indices are written with the third
index as a dot, e.g.(12.0), and in other cases the i index is omifted completely, as in
(120). ‘

Directions in crystals and lattices are labelled by first drawing a line that passes

[323]
1,671

Cib. -t N\l [210]
1.5.0

Fig. 5.23 Indices of directions
[210] and {323}
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through the origin and parallel to the direction in question. Let the line pass
through a point with general fractional coordinates x, y, z; the line also passes
through 2x, 2y, 2z; 3x, 3y, 3z, etc. These coordinates, written in square brackets
[x, y, z], are the indices of the direction; x, y and z are arranged to be the set
of smallest possible integers, by division or multiplication throughout by a
common factor. Thus [$40], [110], [330] all describe the same direction, but
conventionally [110] is used. For cubic systems, an [hkl] direction is always
perpendicular to the (hkl) plane of the same indices, but this is only sometimes
true in non-cubic systems. Sets of directions which, by symmetry, are equivalent,
e.g. cubic [100], [010], etc., are written with the general symbol <100). Some
examples of directions and their indices are shown in Fig. 5.23.

5.3.7 d-spacing formulae

_ We have already defined the d-spacing of a set of planes as the perpendicular
distance between any pair of adjacent planes in the set and it is this d value that
appears in Bragg’s Law. For a cubic unit cell, the (100) planes simply have a d-
spacing of a, the value of the cell edge(Fig. 5.22b). For (200) in a cubic cell, d = a/2,
etc. For orthogonal crystals (i.e. & = =7 =90°), the d-spacing for any set of
planes is given by the formula

1 p* k2 P

d2, a® B

The equation simplifies for tetragonal crystals, in which a = b, and still further for
cubic crystals with a = b = c; i.e. for cubic crystals,

1 _h2+k2+l2

= | (5.5)

(54)

As a check, for cubic (200), h =2, k =1=0 and 1/d? = 4/a®. Therefore,

Monoclinic and especially, triclinic crystals have much more complicated d-
spacing formulae because each angle that is not equal to 90° becomes an
additional variable. The relevant formulae for d-spacings and unit cell volumes
are given in Appendix 6.

5.3.8 Lattice planes and d-spacings—how many are possible?

The number of possible sets of lattice planes and their corresponding d-
spacings is usually large, but finite for two reasons. First, the wavelength of the X-
ray beam that is used places a lower limit on the d-spacings that may be
experimentally observed: from Bragg’s Law, nA = 2d sin § and d = nA/2 sin 6. The
maximum value of sin 8 is 1 (when 20 = 180°) and this places a lower limit on the
observed d-spacings of d = A/2 (for n=1). For CuKa, 1/2~0.77A and, if it is
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Table 5.4 Calculated d-spacings for an or-
thorhombic cell, for a=3.0, b=4.0, c= 50A

hkl dA)
001 5.00
010 4.00
011 3.12
100 3.00
101 2.57
110 2.40
111 2.16

desired to measure d-spacings that are smaller than this, the target metal in the X-
ray tube must be changed for one which gives a shorter wavelength radiation, ¢.g.
molybdenum (see Table 5.1).

Second, the number of sets of planes is limited because the Miller indices, used
in calculating d-spacing values can have only integral values (i.e. h,k,I=
0,1,2,...). There is an inverse relation between d-spacing and the magnitude of
the Miller indices. Thus, the largest d-spacings which may be observed
correspond to Miller indices such as (100), (010), (001), (110), etc. If the unit cell
dimensions are known, it is possible to calculate all the possible d-spacings by
substituting values of h,k and ! into the appropriate d-spacing formula. For
example, consider an orthorhombic substance that has cell parameters a = 3.0,
b=4.0, c=50A. The d-spacings are given by equation (5.4):.

1 h* k* P
2,916 2
Limiting ourselves to h,k and [ values of 0 and 1, the various possible hkl
combinations and their calculated d-spacings are given in Table 5.4. The hkl
values are listed in order of decreasing d-spacing; hence 011 appears above 100.
Obviously, the list could be extended for larger h, k, 1 values and, for example,
could be terminated when a certain minimum d-spacing had been reached. If
h, k, 1 values of 2 were included then, for example, 002 would appear in the list with
a d-spacing of 2.5A.

5.3.9 Systematically absent reflections

In Section 5.3.8, the factors that govern the maximum number of possible lattice
planes and d-spacings are discussed. In principle, each of these sets of planes will
diffract (or reflect) X-rays, but in many cases the resultant intensity is zero. These
absent reflections may be divided into two groups: those that are absent due to
some quirk in the structure and those that are absent due to the symmetry or type
of lattice possessed by the structure. The latter are known as systematic absences.
Systematic absences arise if either the lattice type is non-primitive (I, F, etc.) or if
elements of space symmetry (screw axes, glide planes) are present.
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Fig.5.24 (a) Body centred cubic «-Fe,
(b) (100) planes, (c) (200) planes

As an example of absences due to lattice type, consider a-Fe.(Fig. 5.24a), which

?s bod_y centred cubic. Reflection from the (100) planes (Fig. 5.24b) has zero
intensity and is systematically absent. This is because, at the Bragg angle for these
planes, the body centre atoms which lie midway between adjacent (100) planes
diffract X-rays exactly 180° out of phase relative to the corner atoms which lie on
the (100) planes. Averaged over the whole crystal, there are equal numbers of
corner and body centre atoms and the beams diffracted by each cancel
completely. In contrast, a strong 200 reflection is observed because all the atoms
lie on (200) planes (Fig. 5.24¢) and there are no atoms lying between (200) planes
to cause destructive interference. It is easy to show, by similar arguments, that the
110 reflection is observed whereas 111 is systematically absent in a-Fe. For each
non-primitive lattice type there is a simple characteristic formula for systematic
absences (Table 5.5). For a body centred cell reflections for which (h + k + ) is
odd are absent, e.g. reflections such as 100, 111, 320, etc,, are systematically
absent.

Systematic absences caused by the presence of space symmetry elements are
rather complicated and difficult to describe and will be dealt with only briefly.
Absences arise because, in certain orientations of a crystal that possesses space
symmetry elements, the dimensions of one or more of the unit cell edges appear to
be reduced (often by half). For the screw axis shown in Fig. 5.17(a), the true cell
repeat, a, is indicated ; however, when the (h00) planes only are considered the cell
repeat appears to be a/2. Because the (h00) planes are perpendicular to x, any

Table 5.5 Systematic Absences due to lattice type

Lattice type Rule for reflection to be observed*
Primitive, P None

Body centred, I hkl; h+ k+1=2n

F ace centred, F hkl; h, k, | either all odd or all even
Side centred, e.g. C hkl; h+k=2n

Rhombohedral, R hkl; —h+k+1=3n

or(h—k+1=3n)

*If lsipat.:e symmetry elements are present, additional rules limiting the observable reflections may
apply. A
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difference in rotational orientation about x does not affect diffraction from the
(h00) planes. In other words, the position of atoms in planes perpendicular to x
does not affect the intensity of (h00) reflections since these intensities depend only
on the atomic positions along the x axis. Thus, by considering diffraction from the
(h00) planes alone, it is not possible to distinguish between a simple translation of
a/2 and a translation of a/2 combined with a rotation of 180° about x. For a 2,
screw axis parallel to x, reflections such as (100), (300),...,(h00): h = 2n+ 1 are
systematically absent.

It is difficult to show pictorially how the presence of glide planes leads to
certain systematic absences. Suffice it to say that it does and that there are several
types of glide plane, depending on the magnitude and direction of the translation
step and on the orientation of the reflection plane. For example, a glide plane
which has a translation of b/2 and is reflected across the bc plane is characterized
by the absence of reflections of the type 0kl : k = 2n + 1; i.e. for the Okl planes the
length of the b cell edge appears to be halved. Further discussion of screw axes
and glide planes is given in Chapter 6.

5.3.10 Multiplicities

For cubic materials, lattice planes such as (013), (031), (103), (130), etc., all have
the same d-spacing, as can be shown readily from the d-spacing formula for cubic
crystals (equation 5.5). In a powder X-ray pattern, the variable coordinate is d-
spacing, or Bragg angle 6, and, therefore, reflections which have the same d-
spacing will be superposed. The multiplicity of a powder line is the number of
lines, one from each set of planes, that are superposed to give the observed line.
Multiplicities may be calculated readily if the crystal symmetry is known: the
object is to find the maximum possible number of (hkl) combinations which are
equivalent, taking both positive and negative values of h, k and I. The maximum
multiplicity possible is 48 and occurs for cubic symmetry and h, k, [ reflections
where h £ k+1+£0; i.e.

hkl  hkl hik hlk lkh Ikh
hkI hkl hlk  hlk lkh  Tkh
hkl  hkl  hlk hlk lkh Tkh
hki  hkl  hik  hlk  Tkh

Ink Ihk. kih  klh  khl  khl
lnk Thk klh- kih  khl  khl
Ihk Thk klh  klIh  khl  khl
Thk Tk kih klh  khl  Kkhl

For orthorhombic crystals, 4, k and | cannot be interchanged, as a # b # ¢, but
negative and positive permutations are still possible to give a general multiplicity
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Fig. 5.25 Negative and positive Miller
indices

of eight; i.e.

hkl  hkl  hkl  hkl
hkl  hkl Rkl hkl

The number of possible permutations for any symmetry is reduced when A, k or
= 0. For example, the cubic 100 powder line has a multiplicity of only six, i.e. 100,
100, 910, 010, 001 and 001. Orthorhombic 100 has a multiplicity of two, i.e. 100
and 100.

Negative Miller indices indicate that the opposite or negative directions of the
relevant axes must be used in defining the Miller indices. This is seen in Fig. 5.25
which shows a monoclinic cell, as heavy lines, in projection down b. The origin of
the cell, O, and the chosen positive directions for x and z are marked. For
illustration consider the {101} planes. These planes are all parallel to y and,
therefore, perpendicular to the plane of the paper. Two planes of the sets(101) and
(101) are drawn as light lines. In defining the (101) planes, the plane p, which is the
plane adjacent to the one (not shown) that passes through the origin, cuts the x
axis at -1 and the z axis at 1. It should be apparent from the scale of the drawing
that dyo, # djo, unless B = 90° as in, say, orthorhombic crystals.

The (101) planes (not shown) are exactly the same as the (101) planes and may
simply be regarded as the (101) planes ‘looked at from the opposite direction’. It is
important, however, to give the (101) and (101) planes separate status, especially
in single crystal diffraction studies. Similarly, the planes (101) and (101) are the
same but are treated separately in diffraction. For general planes, (hkl), this
equality or ‘counting twice’ of d-spacings is for the pairs of planes (hkl) and (hkI).
All powder lines therefore have a minimum multiplicity of two. In single crystal
diffraction studies-(hkl) and (hkl) may be observed as separate reflections. The
intensity of corresponding (hkl) and (hkl) reflections is usually the same but under
certain circumstances, such as when anomalous dispersion is present, the
intensities are not equal. It is often stated that ‘diffraction patterns in reciprocal
space possess a centre of symmetry’. This grandiose statement means that hkl and
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hKT reflections are equivalent, subject to the condition that anomalous dispersion
is not present.

5.3.11 Unit cell contents, crystal densities and formulae

The unit cell, by definition, must contain at least one formula unit, whether it be
an atom, ion pair, molecule, etc. In centred cells, and sometimes in primitive cells,
the unit cell contains more than one formula unit. A simple relation may be
derived between the cell volume, the number of formula units in the cell, the
formula weight and the bulk crystal density. The density is given by

mass formula weight

volume molar volume

_ FW
" volume of formula unit x N

where N is Avogrado’s number. If the unit cell, of volume V, contains Z formula
units, then

¥ = volume of one formula unit x Z
Therefore,
_ FWx Z

VXN (5.6)

Vis usually expressed as A* and must be multiplied by 10~ 24 10 give densities in
the normal units of grams per cubic centimetre. Substituting for Avogrado’s
number, the above formula reduces to

D___FW><%/x1.66

If Vis in A3 in equation (5.7), the units of D are in grams per cubic centimetre. -
This simple formula has a number of uses, as shown by the following examples:-

(5.7

(a) Tt can be used to check that a given set of crystal data are consistent and that,
for example, an erroneous formula weight has not been assumed.

(b) It can be used to determine any of the four variables if the other three are
known. This is most common for Z (which must be a whole number) but is
also used to determine FW and D.

(&) By comparison of D, (the experimental density of a material) and Dy, (the §
density calculated from the above formula), information may be obtained on: '
the presence of crystal defects such as vacancies as opposed to interstitials, the ]
mechanisms of solid solution formation, the porosity of ceramic pieces. |

Considerable confusion often arises in determining the value of the contents, Z, 1
of a unit cell. This is because atoms or ions that lie on corners, edges or faces of the |
unit cell are also shared between adjacent cells, and this must be taken into |}
consideration.
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qu example, a-Fe(Fig. 5.24a) has Z = 2. The corner iron atoms, of which there
are elght, are each shared between eight neighbouring unit cells. Effectively, each
contributes only 3 to the particular cell in question, giving 8 x & = 1 net iron,atom
for the corners. The body centre iron atom lies entirely inside the unit cell and
counts as one. Hence Z = 2.

For NaCl(Fig. 5.9), Z = 4,i.e.4(Na™ Cl ). The corner Na* ions again count as
one. The face centre Na* ions, of which there are six, count as 4 each, giving a
total of 1 + 3 =4 Na™ ions. The Cl ™ ions at the edge centres, of which’there are

£ £ ’

5.4 The X-ray diffraction experiment

W'hen reduced to basic essentials, the X-ray diffraction experiment, Fig. 5.26
requires an X-ray source, the sample under investigation and a detect’or to éicl(,
up the diffracted X-rays. Within this broad framework, there are three variables
which govern the different X-ray techniques:

(a) radiation—monochromatic or of variable 4;
(b) sample—single crystal, powder or a solid piece;
(c) detector—radiation counter or photographic film.

diffracted
rays
source e ncident
ee )(._rQYS

sample

Fig. 5.26 The X-ray diffraction experiment

WAVELENGTH

SAMPIE DETECTOR METHOD
Counter Diffractometer
Powder Debve-Sch
Film { e ; ye-Scherrer
Guinier (Focusing)
Fixed Rotation
' (Oscillation)
Film Weissenberg
. Precession (Buerger)
Single crystal
Counter Automatic
Diffractometer
Variable Solid piece Film Laue

Fig. 5.27 The different X-ray diffraction techniques



144

These are summarized for the most important techniques in Fig. 5.27. With the
exception of the Laue method, which is used almost exclusively by metallurgists
and is not discussed here, monochromatic radiation is nearly always used. An
outline of powder and single crystal methods is given in this section with a more
comprehensive account of powder methods being given in Section 5.6.

5.4.1 The powder method—principles and uses

The principles of the powder method are shown in Fig. 5.28. A monochromatic
beam of X-rays strikes a finely powdered sample that, ideally, has crystals
randomly arranged in every possible orientation. In such a powder sample, the
various lattice planes are also present in every possible orientation. For each set
of planes, therefore, at least some crystals must be oriented at the Bragg angle, 0,
to the incident beam and thus, diffraction occurs for these crystals and planes.
The diffracted beams may be detected either by surrounding the sample with a
strip of photographic film (Debye—Scherrer and Guinier focusing methods) or by
using a movable detector, such as a Geiger counter, connected to a chart recorder
(diffractometer).

The original powder method, the Debye-Scherrer method, is little used

.

’y >
sample
source l .
(Cw) filter detector
(Ni) (film or movabie

counter )

Fig. 5.28 The powder method

Fig. 5.29 The formation of a cone of diffracted
radiation in the powder method
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nowadays, but since it is simple it is instructive to consider its mode of operation.
For any set of lattice planes, the diffracted radiation forms the surface of a cone, as
shown in Fig. 5.29. The only requirement for diffraction is that the planes be at
angle 0 to the incident beam; no restriction is placed on the angular orientation
of the planes about the axis of the incident beam. In a finely powdered sample,
crystals are present at every possible angular position about the incident beam
and the diffracted beams that result appear to be emitted from the sample as
cones of radiation. (Each cone is in fact a large number of closely spaced diffracted
beams.) If the Bragg angle is 6, then the angle between diffracted and undiffracted
beams is 20 and the angle of the cone is 40. Each set of planes gives its own cone of
radiation. The cones are detected by a thin strip of film wrapped around the
sample (Fig. 5.28); each cone intersects the film as two short arcs (Fig. 5.30),
which are symmetrical about the two holes in the film (these allow entry and exit
of incident and undiffracted beams). In a well-powdered sample, each arc appears
as a continuous line, but in coarser samples the arcs may be spotty due to the
relatively small number of crystals present.

To obtain d-spacings from the Debye—Scherrer film, the separation, S, between
pairs of corresponding arcs is measured. If the camera (film) radius, R, is known,
then

S 40

7R 360 (.8)

from which 26 and therefore d may be obtained for each pair of arcs. The
disadvantages of this method are that exposure times are long (6 to 24 hours) and
that closely spaced arcs are not well resolved. This is because, although the
incident beam enters the camera through a pinhole slit and collimator tube, the
beam is somewhat divergent and the spread increases in the diffracted beams. If,
in an effort to increase the resolution, a finer collimator is used, the resulting
diffracted beams have much less intensity and longer exposure times are needed.
Apart from considerations of the extra time involved, the amount of background
radiation detected by the film (as fogging) increases with exposure time and,
consequently, weak lines may be lost altogether in the background.

In modern film methods (Guinier focusing methods) a convergent, intense
incident beam is used with the result that excellent resolution of lines is obtained
and exposure times are much reduced (10 min to 1hr). A convergent beam is
obtained by placing a bent single crystal of quartz or graphite between the X-ray
source and the sample. The orientation of this bent crystal is adjusted so that it

00 T =77

B e

S _ 48 S
/ZHR - /360

Fig. 5.30 Schematic Debye-Scherrer photograph
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diffracts the incident beam and converts it from a divergent beam into a
convergent one. The beam then strikes the sample and the diffracted beams are
arranged to focus at the surface of the film. Further details are given in Section 5.6.
A typical schematic, Guinier film is shown in Fig. 3.1.

The other modern powder technique is diffractometry, which gives a series of
peaks on a strip of chart paper. A convergent incident beam is again used (Section
5.6) to give fairly good resolution of peaks. Both peak positions and intensities
(peak heights) are readily obtained from the chart to make this a very useful and
rapid method of phase analysis.

The most important use of the powder method is in the qualitative
identification of crystalline phases or compounds. While most chemical methods
of analysis give information about, the elements present in a sample, powder
diffraction is very different and perhaps unique in that it tells which crystalline
compounds or phases are present but gives no direct information about their
chemical constitution.

Each crystalline phase has a characteristic powder pattern which can be used
as a fingerprint for identification purposes. The two variables in a powder pattern
are peak position, i.e. d-spacing, which can be measured very accurately if
necessary, and intensity, which can be measured either qualitatively or quanti-
tatively. It is rare but not unknown that two materials have identical powder
patterns. More often, two materials have one or two lines with common d-
spacings, but on comparing the whole patterns, which may contain between ~ 35
and 100 observed lines, the two are found to be quite different. In more extreme
cases, two substances may happen to have the same unit cell parameters and,
therefore, the same d-spacings, but since different elements are probably present
in the two, their intensities are quite different. The normal practice in using
powder patterns for identification purposes is to pay most attention to the d-
spacings but, at the same time, check that the intensities are roughly correct.

For the identification of unknown crystalline materials, an invaluable reference
source is the Powder Diffraction File (Joint Committee on Powder Diffraction
Standards, Swarthmore, USA), previously known as the ASTM file, which
contains the powder patterns of about 35000 materials; new entries are added at
the current rate of ~ 2000 p.a. In the search indices, materials are classified either
according to their most intense peaks or according to the first eight lines in the
powder pattern in order of decreasing d-spacing. Identification of an unknown is
usually possible within 30 min of obtaining its measured powder pattern.
Probiems arise if the material is not included in the file (obviously!) or if the
material is not pure but contains lines from more than one phase.

For many types of work, the materials being analysed may not be completely
unknown but may be restricted to a range of possible phases. It is then much
easier to have to hand a standard pattern of all the phases likely to be
encountered. Comparison of the unknown with the standard patterns leads to
identification in a matter of minutes. Guinier films are admirably suited to this
type of work since they are small and can be easily compared by simply lining up
the back stop mark (corresponding to 0°26) on each.
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Table 5.6 Some uses of the powder method

Characterization of materials by X-ray ‘fingerprints’
Qualitative phase analysis (presence or absence of phases)
Quantitative phase analysis

Refinement of unit cell parameters

Study of solid solution formation

Determination of crystal size

Study of crystal distortion by stress

Measurement of thermal expansion coefficients (HTXR)*
Determination of high temperature phase diagrams (HTRX)*
Study of phase transformations

Crystal structure determination

Study of the reactions of solids

* HTXR = high temperature X-ray diffraction.

The powder method has many important secondary uses, especially in the
general area of applied crystallography. These are discussed in Section 5.6 and in
various places throughout this book; a summary is given in Table 5.6.

5.4.2 Single crystal methods—principles and uses

The main uses of single crystal methods are, as indicated in Section 3.2.1.3, to
determine unit cells and space groups and, if there is sufficient interest, to measure
the intensities of reflections and carry out a full crystal structure determination.
Monochromatic X-rays are generally used, an optimum crystal size is ~ 0.2 mm
diameter and the detector may be either film or counter. Only film methods are
discussed here. The sole purpose of the counter method, using a single crystal
diffractometer, is to collect intensity data. As such it is an extremely valuable
instrument but it is not really a technique which a solid state chemist can use for
himself as part of his armoury of experimental techniques and, therefore, is not
discussed further.

There are three main film techniques: the rotation or oscillation method, the
Weissenberg method and the precession method. A brief outline of each is given
next but details of how the instruments work are omitted. The latter two methods
are rather complicated and anyone wishing to understand them is recommended
to get direct instruction and practical experience in their use.

In the rotation method, a crystal is mounted by sticking it onto, for example, a

photographic film

incident ——crystal (rotating or oscillating)

X -rays

Fig. 5.31 Schematic single crystal rotation method
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glassfibre. The crystalis setso that one of its unit cell axesis vertical and it is mad
to oscillate or rotate about this axis (Fig. 5.31). A horizontal beam of X-ray:
strikes the crystal and the diffracted beams are detected by a piece of film bent
round the crystal in the form of a cylinder. After developing the film, parallel rows
of spots are seen (Fig. 5.32), each spot corresponding to diffraction from one
particular set of planes in the crystal. There are two main uses of these
photographs. From oscillation photographs (with the crystal oscillated through,
for example, 15° about the vertical axis), the presence of symmetry in the
distribution and intensity of spots in the photograph is looked for. In particular, if
the top half of the photograph is a mirror image of the bottom half, as it is in
Fig. 5.32, then the vertical axis, about which the crystal is set, is an axis of
symmetry. Not all unit cell axes are symmetry axes. For instance, in an
orthorhombic structure all three axes are symmetry axes but in a monoclinic
structure, only the unique b axis is a symmetry axis. The second use is for
determining the magnitude of the unit cell dimension in the vertical direction.
Although this is straightforward, a special chart is needed in order to measure the
distance between adjacent rows of spots. This distance in reciprocal space is
inversely related to the magnitude of the unit cell dimension in real space. Thus, if
the rows are closely spaced the unit cell dimension is large, and vice versa.

Let us consider briefly how the zero layer in Fig. 5.32 arises. The zero layer is
the row that passes through the centre of the film. Suppose the crystal has
orthorhombic symmetry and is set with ¢ vertical; a and b are therefore
horizontal. From the definition of Miller indices, we know that planes of the type
(hk0) have one direction in common in that they are all parallel to c. Since the
incident X-ray beam is horizontal and therefore perpendicular to ¢, it follows that
all beams diffracted from the (hk0) planes are also horizontal. These beams
radiate horizontally from the crystal and are detected on film as the zero layer
row of spots.

The next row of spots, the first layer, corresponds to reflections from the (hk1)
set of planes, and so on. The position of the spots on the zero layer row depends

SECOND LAYER|. e TN )
FIRST LAYER | e e e LRK
ZERO LAYER O e e e hk(_)
FIRST LAYER e - hk3
SECOND LAYER hk 2

< :
this distance is inversely
related to the value of ¢

Fig. 5.32 Schematic oscillation photograph obtained in the rotation

method. It is assumed that the crystal ¢ axis is vertical. Further

details are not given since a reference chart is needed in order to
measure up the photograph
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on the d-spacings of the planes in question and therefore on the values of h and k.
Planes that have large d-spacings diffract X-rays at low Bragg angles and these
are the spots closest to the hole in the centre of the film (this hole is the exit for
undiffracted X-rays and corresponds to a Bragg angle of zero).

In studying a new crystal, one usually starts with the rotation camera. Once the
crystal is set with one axis vertical, it is possible to tell from the photographs the
value of that unit cell dimension. To obtain the remaining cell dimensions (two
sides, three angles), the individual rows of spots have to be analysed. If the crystal
is of high symmetry and does not give too many spots on the rotation
photograph, it may be possible to obtain the remaining information by a suitable
graphical analysis of the photograph. It is more common, however (if one has the
equipment), to put the crystal onto either a Weissenberg or a precession camera.
Essentially, both of these cameras take a single row of spots (as observed in the
rotation photograph) and separate the spots into two dimensions.

In the Weissenberg method, the crystal is also surrounded cylindrically by film
but metal screens are placed between the crystal and the film such that only one
row of spots, or layer line, is allowed through. During exposure, the crystal
undergoes a slow oscillation and at the same time the film translates up and

///
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Fig. 5.33 Schematic zero layer (hk0) Weissenberg
photograph. All spots are shown with equal intensity.
In practice, intensities vary
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down. The coupling of the film and crystal motions is rather complicated and will
not be considered here. A schematic, simplified Weissenberg photograph is
shown in Fig. 5.33. The pattern of spots is distorted because of the manner of the
coupling between the two motions. From the photograph, one first looks for the
two axes; these are labelled as a* and b* if the crystal is set about c; note that
each axis appears on the photograph several times. (The starring of axes is
associated with the reciprocal lattice; it is discussed later and in Appendix 7.) The
* axial spots lie on straight lines but all the others are on curves. The separation of
the spots along the a* and b* axes is related inversely to the value of the cell
parameter for those axes and so the second and third unit cell dimensions may be
‘obtained from the photographs. The distance between two axial rows of spots is
~ related to the angle between these two axes in the unit cell, i.. to the angle y for
axes a* and b*. Because of the distorted nature of Weissenberg photographs it is
almost essential, in measuring them up, to superpose the film over a suitably
scaled reference grid (not shown). It then becomes a straightforward process to
obtain the relevant unit cell information. Some of the spots in Fig. 5.33 have been
assigned Miller indices, hkl. The method used for this assignment is similar to that
used for precession photographs, discussed next.

The precession method gives photographs that are much easier to interpret and
measure and also are more attractive aesthetically (see Fig. 3.2 and Section
3.2.1.3). Each layer line of a rotation photograph is converted, in a precession
photograph, into a two-dimensional network of spots. One first inspects the
photograph for the presence of symmetry in the distribution and intensity of the
spots and thereby locates the two axes a* and b* (sometimes it is possible to
choose more than one set of valid axes, especially if there is not much symmetry
evident from the photograph). Next, it is important (in Weissenberg films also) to
assign Miller indices to the spots. To see how this is done, let us suppose that our
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Fig. 5.34 Indexing of a precession photograph,
hk0 layer
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photograph is a zero layer photograph for a crystal set about ¢ (Fig. 5.34) and for
which the angle between a* and b* is not 90°. All the spots, therefore, have Miller
indices that belong to the set (hk0). The spots are shown of the same size and
intensity but in practice this is most unlikely to occur. The spots in the row that
forms the a* axis have indices (h00) which are labelled, working out from the
centre of the film, with increasing h values. Similarly, the row of spots that forms
the b* axis is the (0k0) set of reflections and is labelled accordingly. Negative
directions of a* and b* are indicated by the bar over the appropriate Miller
indices. We have now labelled the two axes and so all remaining spots may be
indexed, as shown.

A fundamental feature of precession photographs is that distances on them, e.g.
between pairs of spots, are inversely proportional to the corresponding distances
in the actual crystal. Consider the h00 reflections. We know that d, o =2d,, =
3d,.0, etc. On the precession photograph, the reverse is true. The distance of
the 100 spot from the origin (the centre of the film) is exactly half the distance of
the 200 spot from the origin, and so on. This brings us to the distinction between
real space, in which the crystal exists, and reciprocal space, which describes the
directions followed by diffracted beams and hence the patterns of spots on single
crystal photographs. The starring of axes, a* and b*, is done to distinguish the
axes of the reciprocal lattice from those of their real space counterparts, aand b. If
the unit cell in real space is orthogonal (a = f§ = y = 90°), then real and reciprocal
axes are parallel because, for example, a* = 180° — a = 90° = o, etc. This is not
necessarily true for non-orthogonal crystals, however, if a* # «, etc. A derivation
of the reciprocal lattice is given in Appendix 7.

The beauty of the precession method is that, unlike the Weissenberg method,
its photographs give an undistorted picture of the reciprocal lattice. This makes
their interpretation very easy and logical. A slight disadvantage is that the
theory behind the operation of the camera is rather complicated.

The use of single crystal methods in determining the nature of the unit cell and
its dimensions has been mentioned several times. An extension of this is the
determination of lattice type and possible space group(s) by inspecting the
Weissenberg or precession photographs for systematically absent reflections.
Once Miller indices have been assigned to spots, it is easy to see if certain groups
of spots are absent (remember, centred lattices, screw axes and glide planes all
cause systematic absences). For example, the arrangement of spots in Fig. 5.35(a)
shows that the a* row has every other spot absent in the hk0 layer; let us assume
that there are no systematic absences in the hk1 layer (not shown). From this, we
can say that there are no general hk1 absences and no general hk0 absences, but
for h00 we have the condition that, for reflection to occur, h = 2n (because 100,
300, 500, etc., are absent). This means that parallel to a in the crystal, thereisa 2,
screw axis.

In Fig. 5.3%b) and (c) are shown schematic zero layer and first layer
photographs for a body centred lattice. From an examination of (b) in isolation
one would perhaps choose 1 and 2 for axes of the reciprocal lattice but it would
then be difficuit to subsequently interpret(c) because in(c) no spots lie on the axes,
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Fig. 5.35 Reciprocal lattices showing (a) 2, screw axis
parallel to a, (b) and (c) body centring

1 and 2. The correct axes are marked a* and b*; in (b) alternate spots are-
systematically absent which leads to the condition for reflection; hk0: h + k = 2n *‘;
(e.g. 200, 400, 110, 130, etc., are present). In (c) also, alternate spots are absent but  #

now the condition for reflectionis hkl:h + k =2n+1(e.g. 101,011, 211, etc., are
present). If we assume that layers hk2, hk4, etc., have the same pattern of absences

as hk0 and that hk3, hk5, etc., are similar to hkl, then we arrive at the general |

condition for reflection hkl: h + k + I = 2n, which corresponds to a body centred

lattice type, Table 5.5. The reader may now like to work out how a ‘fage i
centred lattice appears in reciprocal space. The answer is given in Appendlx A

7.
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Once the crystal system, lattice type and systematic absences have been
determined, a short list of possible space groups—sometimes one, but, more
usually, two or three—for the crystal can be found by comparing the absences with
those for the different space groups (given in International Tables Jor X-Ray
Crystallography, Vol. 1). For example, suppose our crystal has a primitive
orthorhombic unit cell and its only systematic absences indicate a 2 1 SCrew axis
parallel to one of the unit cell axes. From an inspection of all possible space
groups we find that our crystal must belong to the space group P222, (Chapter 6).

5.5 Intensities

Intensities of X-ray reflections are important for two main reasons. First,
quantitative measurements of intensity are necessary in order to determine
unknown crystal structures. Second, qualitative or semi-quantitative intensity
data are needed in using the powder fingerprint method to characterize materials
and especially in using the powder diffraction file to identify unknowns. Although
this book is not concerned with the methods of crystal structure determination, it
is considered important that the factors which control the intensity of X-ray
reflections be understood. The topic falls into two parts: the intensity scattered by
individual atoms and the resultant intensity scattered from the large number of
atoms that are arranged periodically in a crystal.

5.5.1 Scattering of X-rays by an atom

Atoms diffract or scatter X-rays because an incident X-ray beam, which can be
described as an electromagnetic wave with an oscillating electric field, sets each
electron of an atom into vibration. A vibrating charge such as an electron emits
radiation and this radiation is in phase or coherent with the incident X-ray beam.
The electrons of an atom therefore act as secondary point sources of X-rays.
Coherent scattering may be likened to an elastic collision between the wave and
the electron: the wave is deflected by the electron without loss of energy and,
therefore, without change of wavelength. The intensity of the radiation scattered
coherently by ‘point source’ electrons has been treated theoretically and is given
by the Thomson equation:

1o 3(1 + cos? 26) (5.9

where I is the scattered intensity at any point, P, and 26 is the angle between the
directions of the incident beam and the diffracted beam that passes through P.
From this equation it can be seen that the scattered beams are most intense when
parallel or antiparallel to the incident beam and are weakest when at 90° to the
incident beam. The Thomson equation is also known as the polarization factor
and is one of the standard angular correction factors that must be applied during
the processing of intensity data (for use in structure determination).

At this point, it is worth mentioning that X-rays can interact with electrons in a
different way to give Compton scattering (Section 5.6.8). Compton scattering is
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rather like an elastic collision in that the X-rays lose some of their energy on
impact and so the scattered X-rays are of longer wavelength than the incident X-
rays. They are also no longer in phase with the incident X-rays; nor a they in
phase with each other. A close similarity exists between Compton scat ering and
the generation of white radiation in an X-ray tube; both are examples of
incoherent scattering that are sources of background radiation in X-ray
diffraction experiments. As Compton scattering is caused by interaction between
X-rays and the more loosely held outer valence electrons, it is an important effect
with the lighter elements and can have a particularly deleterious effect on the
powder patterns of organic materials such as polymers.

The X-rays that are scattered by an atom are the resultant of the waves
scattered by each electron in the atom. The electrons may be regarded as particles

-that occupy different positions in an atom and interference occurs between their

scattered waves. For scattering in the direction of the incident beam (Fig. 5.36a)
beams 1’ and 2, all electrons scatter in phase irrespective of their position. The -
scattered intensity is, then, the sum of the individual intensities. The scattering ‘
factor, or form factor, f, of an atom is proportional to its atomic number, Z, or,
more strictly, to the number of electrons possessed by that atom.

For scattering at some angle 26 to the direction of the incident beam, a phase |
difference, corresponding to the distance XY, exists between beams 1” and 2". ]
This phase difference is usually rather less than one wavelength (i.e. XY < 1.5418
A for CuKa X-rays) because distances between electrons within an atom are
short. As a result, only partial destructive interference occurs between 1” and 2",
The net effect of interference between the beams scattered by all the electrons in 1
the atom is to cause a gradual decrease in scattered intensity with increasing
angle, 20. For example, the scattering power of copper is proportional to 29 (i.e.
Z) at 26 =0°, to 14 at 90° and to 11.5 at 120°. It should also be apparent from
Fig. 5.36(a) that for a given angle, 20, the net intensity decreases with decreasing §
X-ray wavelength. The form factors of atoms are given in International Tables for §
X-ray Crystallography, Vol. 3 (1952). They are tabulated against (sin 0/4) to
include the effect of both angle and X-ray wavelength; examples are shown in 4
Fig. 5.36(b). .

Two consequences of the dependence of form factors on sin §/4 and atomic
number are as follows. First, the powder patterns of most materials contain only
weak lines at high angles (above ~ 60 to 70°26). Although several factors A
contribute to powder intensities, the main reason for this effect is that the atoms §
scatter only weakly at high angles (Fig. 5.36b). Second, in crystal structure
determinations using X-rays, it is difficult to locate light atoms because their}
diffracted radiation is so weak. Thus hydrogen atoms cannot usually be located
unless all the other elements present are also extremely light (¢.g. in boron hydride
crystals). Atoms that have as many electrons as oxygen can usually be located]
easily unless a very heavy atom such as uranium is present. Structures that are/
particularly difficult to solve are those in which a considerable number or all of!
the atoms present have similar atomic number, e.g. large organic molecules with
carbon, nitrogen and oxygen atoms. In such cases, a common ploy is to make &
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Fig. 5.37 (a) (1 10) and (b) (11 1) planes in NaCl
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Table 5.7 X-ray powder diffraction patterns for potassium halides. (Data from Joint
Committee on Powder Diffraction Standards, Swarthmore)

KF,a=5.347A KCl,a=62931A KI,a=7.0655A
(hkD) d(A) I d(A) I d(A) I
111 3.087 29 — 4.08 42
200 2671 100 3.146 100 3.53 100
220 1.890 63 2.224 59 2498 70
311 1.612 10 — — 2.131 29
222 1.542 17 1.816 23 2.039 27
400 1.337 8 1.573 8 1.767 15

reflection therefore occurs. In Fig. 5.37(b), (111) planes have Na* ions lying on
the planes and Cl™ ions midway between the planes. The Na* and Cl~ ions
scatter exactly 180° out of phase with each other for these planes, but since they
have different scattering powers the destructive interference that occurs is only
partial. The intensity of the 111 reflection in materials that have the rock salt
structure 1s, therefore, related to the difference in atomic number of anion and
cation. For the potassium halides, the 111 intensity is zero for KCl, since K * and
Cl™ are isoelectronic, and its intensity should increase in the order

KCl < KF <KBr<KI

Some data which confirm this are given in Table 5.7.

Similar effects may be found in other simple crystal structures. In primitive
cubic CsCl, if the difference between cesium and chlorine is ignored the atomic
positions are the same as in body centred a-Fe (Fig. 5.24). The 100 reflection is
systematically absent in a-Fe but is an observed reflection with CsCl because the
scattering powers of Cs* and Cl~ are different, i.e. fi,. # Sfa--

5.5.3 Intensities—general formulae and a model calculation for CaF,

Each atom in a crystal scatters X-rays by an amount related to the scattering
power, f, of that atom. In summing the individual waves to give the resultant
diffracted beam, both the amplitude and phase of each wave are important. If we
know the atomic positions in the structure, the amplitude and phase appropriate
to each atom in the unit cell may be calculated and the summation carried out by
various mathematical methods, therefore simulating what happens during
diffraction. Let us consider first the relative phases of different atoms in the unit -
cell. In Fig. 5.38(a) are drawn two (100) planes of a crystal that has an orthogonal
(ie. a = B =y =90°) unit cell. The atoms A, B, C, A’ lie on the a axis (perpendicular
to (100) planes) with A and A’ at the origin of adjacent unit cells. For the 100
reflection, A and A’ scatter in phase because their phase difference is exactly one
wavelength, 2n radians (Bragg’s Law). Atom B, situated halfway between
ndjacent (100) planes, has a fractional x coordinate (relative to A) of 3. The phase
difference between (waves diffracted from) A and B is +-2n =n, ie. atoms
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Fig. 5.38 (a) (100) planes for an orthogonal unit cell (a =
B=y=90°. Atoms A, B, C, A’ lie on the a cell edge.
(b) (200) planes for the same unit cell as in (2)

A and B are exactly out of phase. Atom C has a general fractional coordinate x (a§
distance xa from A) and, therefore, a phase relative to A of 2znx. ;

Consider, now, the 200 reflection for the same unit cell (Fig. 5.38b). Atoms,A
and B have a phase difference of 2x for the 200 reflection and scatter in phase
whereas their phase difference is @ for the 100 reflection (in order tq obey Bragg’
Law, if d is halved, sin § must double; thus 8,44 > 0,,). Comparing ‘the Bfagg\
diffraction conditions for the (100) and (200) planes, the effect of halving d is tQ
double the relative phase difference between pairs of atoms such as A ar.ld
therefore, A and C have a phase difference of (2x-2=) for the (200) Feﬂectlon

For the general case of an h00 reflection, the d-spacing between adjacent (h
planes is (1/h)a(for an orthogonal cell); the phase difference, 6, between AandC

given by
0 = 2mhx

The phase difference between atoms depends, therefore, on two factors: the Mill,‘ ¢
indices of the reflection that is being considered and the fractional coordxpates :
the atoms in the unit cell. The above reasoning may be extended readily to §

general three-dimensional situation. For reflection from the‘ set of planes witly
indices (hkl), the phase difference, 8, between atoms at the origin and a positjo, 3
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with fractional coordinates (x, y, z) is given by
0 =2n(hx + ky + I2) (5.11)

This is an important formula and is applicable to all unit cell shapes. Let us use
it on a simple structure, y-Fe, which is face centred cubic with atoms at the corner
and face centre positions, i.e. with fractional coordinates:

0,0,0;  (330; (3.0,3); (0,41
These coordinates may be substituted into the formula for & to give four phases:
0, n(h + k), n(h + 1), n(k +1)

How do these vary with the Miller indices? If h, k and [ are either all even or all
odd, the phases are in multiples of 2z and, therefore, are in phase with each other.

If, however, one, say h, is odd and the other two, k and l, are even, the four
phases reduce to

0, (2n + D=, @2n+ D,

The first and last are n out of phase with the middle two and complete
cancellation occurs. The y-Fe structure is a simple example of a face centred cubic
lattice in which the iron atoms correspond to lattice points and, in fact, we have
just proved the condition for systematic absences due to face centring (Table 5.5).
The reader may like to prove the condition for systematic absences in a body
centred cubic structure, e.g. by working out the phases of the atoms for the
structure of a-Fe.

The second major factor that affects intensities is the amplitude of the
individual waves scattered by each atom as given by the scattering power, f. From
Section 5.5.1, f is proportional to atomic number, Z, and decreases with
increasing Bragg angle, 6.

We now wish to generalize the treatment to consider any atom in the unit cell.
For atom j, the diffracted wave of amplitude f ; and phase é; may be represented
by a sine wave of the form

2nn

F,=f,sin(wi - 3) (5.12)

The waves diffracted from each atom in the cell have the same angular frequency,
m, but may differ in f and 6. The resultant intensity is obtained from the
summation of the individual sine waves. Mathematically, addition of waves may
be carried out by various methods, including vector addition and by the use of
complex numbers. In complex notation, wave j may be written as

F;=/fi(cos §; +isin ;) (5.13)
or as
Fj =fjei‘5i (514)
The intensity of a wave is proportional to the square of its amplitude; i.e.
Tocf? (5.15)
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and is obtained by multiplying the equation for the wave by its complex
conjugate; i.c.

I (fjemj)(fjeﬁiaj)
and, therefore
Tocf?
Alternatively,
[ f{(cos &; + isin )] [ fi(cos 8, —isind)] =f }(cos? &; + sin*3)) =f?

Substituting the expression for J, the equation of a diffracted wave become; A

F; = f;exp 2mi(hx; + ky; + 1z)

= f;[cos 2n(hx; + ky; + Iz)) + i sin 2n(hx; + ky; + 1z))] (5.16)

When written in these forms, the summation over the j atoms in th.e unit cell ‘;
may be carried out readily, to give the structure factor or structure amplitude, F,, |

for the hkl reflection; i.e.

Fya= _Z (fjeiéj)

or

S
. . 2 . o
The intensity of the diffracted beam I, 18 proportional to | Fyy|* and is obtalned,‘,}

from

L Fual® = [ij(cos 8, +isin 5j):|[2fj(cos 6, —isin 61.)]
j i

=Z(fjcoséj)2+Z(fjsinéj)2 (5.18)

This latter is a very important formula in crystallography because by using it thf‘ﬂ;
intensity of any hkl reflection may be calculated from a knowledge of the atomi

coordinates in the unit cell. Let us see one example of it§ use. Calcium fluor
CaF,, has the fluorite structure with atomic coordinates in the face centred cub)

unit cell:
Ca (0,00 (30 (.09 0,33
F &Ly Gid Gid
333

(%’%’%) (%’%’%) (%a%’%) (74_’3’3

Substitution of these coordinates into the structure factor equation, (5.18), yield .

F sy = fcalcos 27(0) + cos n(h + k) + cosn(h + ) + cos alk+ ]
+ if_,[sin 2n(0) + sin n(h + k) + sinnh + 1)

Fpu=2.f{(cosd; + isind;) (5.17)
i .
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+ sinn(k+ )] + fglcosn/2(h + k + 1)
+cosn/2(h + k + 31) + cosn/2(h + 3k + I)
+cosm/23h + k + 1) + cosm/2(3h + 3k + ])
+ cosw/2(3h + k + 31) + cos n/2(h + 3k + 31)
+cosn/2(3h + 3k + 3D ] + ife[sinn/2(h + k+ 1)
+ sinw/2(h + k + 31) + sinn/2(h + 3k + 1) + sinw/2(3h + k + ])
+ sin/2(3h + 3k + ]) + sinw/2(3h + k + 31)
+ sin 7t/2(h + 3k + 31) + sin /2(3h + 3k + 31)]
Since the fluorite structure is face centred cubic, h, k and I must be either all odd or
all even for an observed reflection; for any other combination, F =0 (try it!).
Consider the reflection 202:
F,0, =fca(cos 0+ cos 27 + cos 4n + cos 2m)

+ if c,(sin 0 + sin 27 + sin 4x + sin 27)
+ fe(cos 27 + cos 4m + cos 2 + cos 4n + cos 4n + cos 61

+ cos 4 + cos 67) + if ¢(sin 27 + sin 4z + sin 27 + sin 4z + sin4n
+ sin 67 + sin 4% + sin 6%)

That is,
Frps=fcd1+14+14+D)+ifc,(0+0+0+0)
(A +1+1+1+14+1+141)
+ifF(0+0+0+0+0+0+0+0)
or

onz = 4fCa + 8fk
The 202 reflection in CaF, has a d-spacing of 1.929 A (a = 5.464A). Therefore
0,0, =23.6° and  sin#/A=0259  for A=1.5418 A(CuKa)

Form factors for calcium and fluorine are given in Fig. 5.36(b); for sin /4 =
0.259, by interpolation,

fea=1265 and  fr=5.8
Therefore,

F202=97

This calculation may be made for a series of hk! reflections and the results, after
scaling, may be compared with the observed values (Table 5.8). In solving
unknown crystal structures, the objective is always to obtain a model structure
for which the calculated structure factors, Fi3°, are in good agreement with those
obtained from the experimental intensities, i.e. Fj;.

An important feature which simplifies the above calculations is that all the sine
terms are zero. This is because the origin of the unit cell is also a centre of
symmetry. For each atom at position (x, y,2) there is a centrosymmetrically
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related atom at (—x, —y, —2) [eg Fat(,3,) and (—4-4-D,ie (1-3%

_ 1 -4 1-Hor2.32] and since sin( — §) = — sin , the summation of the sine
3 terms over the unit cell contents is zero. If, on the other hand, one of the F atoms
I was taken as the origin of the cell, the sine terms would be non-zero because, F,
;'_ ™ - with its immediate coordination environment of 4Ca arranged tetrahedrally,
E does not lie on a centre of symmetry. Many structures, of course, belong to non-
= centric space groups, in which case the complete calculation of F using both
cosine and sine terms cannot be avoided.
A further discussion of Table 5.8 is deferred to Section 5.5.5.
E; 5.5.4 Factors that affect intensities
2| R&F&~ i
P Intensities depend on several factors and not only on the structure factor
& discussed above. The main factors are:
(a) Polarization factor—angular dependence of intensity scattered by electrons
. (Section 5.5.1).
Tl lencwua (b) Structure factor—dependence on the position of atoms in the unit cell and
© | & vosTeo their scattering power (Section 5.5.3).
% (¢) Lorentz factor—a geometric factor that depends on the particular type of
5 instrumex}t usqd and varit.as with 6. Usually lumped with (a) to give the L,
;3 3 % § E % = factor (given in International Tables for X-ray Crystallography, Vol. 2,
B || cscsssc 266-90).
§ (d) Multiplicities—the number of reflections that contribute to an observed
8 powder line (Section 5.3.10).
< . (e) Temperature factor—thermal vibrations of atoms cause a decrease in the
5|~ intensities of diffracted beams and an increase in background scatter
g z (Section 5.6.8).
2 § § § § E gr (f) Absorption factor—absorption of X-rays by the sample and depends on the
R ElesesSs form of the sample and geometry of the instrument. Ideally, for single crystal
2 'é work, crystals should be spherical so as to have the same absorption factor in
g all directions.
(g) Preferred orientation—occurs if the samples used in powder diffraction
do not have a completely random arrangement of crystal orientations
o (Sections 5.4.1 and 5.6.1).
B (h) Extinction—crystals that are nearly perfect have a reduced diffracting power,
Eleazey unimportant in powders.
E These factors need to be considered quantitatively only if one is interested in
carrying out work related to crystal structure determinations. For usage of (a)
o= wvn < Ral single crystal methods to determine unit cells and (b) powder methods to
=T ~ ‘ﬁ fingerprint materials, it is normal practice to use the raw intensity data without
N % 1 518 , applying any of these correction factors.
2|09 |33 I ol
= LT 5 fi 5.5.5 R-factors and structure determination
Q58 ; fi N[ In Section 5.5.3, it was shown how the structure factor, F 55 °, may be calculated
Tlaae0d WA for any hk! reflection from a knowledge of the coordinates of the atoms in the unit
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cell. The values of F&aic for the first five lines in the powder pattern of CaF, are

given in Table 5.8, column 7. The experimental intensities are given in column 3 |
and the intensities after correction for the L, factor and multiplicities (Section
5.5.4(a), (c) and (d) in column 5. The observed structure factor, For, is related to
the corrected intensities by the relation: Figr = /I, and these values are given
in column 6. In order to be able to compare the values of Fyz; and F cale_they must
be scaled such that ¥ Fggr = Fia°. Multiplication of each F obs value by 141
gives the scaled values in column 8. The measure of agreement between the |
individual, scaled FSb and Fa° values is given by the residual factor or R-factor, E
defined as follows:

R =ZIIF°bs' _ |Fcalc||
Z‘Fobsl

Values of the numerator are listed in column 9 and an R-factor of 0.15 (or 15 per
cent after multiplying by 100) is obtained. i

In solving unknown crystal structures, one is guided, among other things, by '}
the value of R; the lower it is, the more likely is the structure to be correct. The
calculation given for CaF, is rather artificial since only five reflections were used |
(one normally uses hundreds or thousands of reflections), but it serves as an ’
illustration. It is not possible to give hard and fast rules about the relation '}
between the magnitude of R and the likely correctness of the structure, but,
usually, when R is less than 0.1 to 0.2, the proposed structure is essentially correct. . §
A structure which has been solved fully using good quality intensity data has R §
typically in the range 0.02 to 0.06.

(519 |

5.5.6 Electron density maps

An electron density map is a plot of the variation of electron density
throughout the unit cell. During the processes of solving an unknown structure
is often useful to construct electron density maps (Fourier maps) in order to try
and locate atoms. As the structure refinement proceeds, the quality of the electro
density map usually improves: the background electron density decreases and,
the same time, more peaks due to individual atoms become resolved. We a
concerned here, not with the methods of structure refinement but only with thgg
results, and the final electron density map obtained at the end of a structure
determination is an important piece of information. Electron density maps
usually take the form of sections through the structure at regular intervals; by
superposing these, a three-dimensional picture of the electron density dist
bution may be obtained. In Fig. 5.39is shown the electron density distribution f
a section through a very simple structure, NaCl. The section is parallel to one fac
of the unit cell and passes through the centres of the Na*, CI™ ions. It has thé
following features. 4

An electron density map resembles a geographical contour map. The contours
represent lines of constant electron density throughout the structure. Peaks of §
electron density maxima may be distinguished clearly and these correspond t0 §
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Fig. 5.39 Electron density map for NaCl

atoms; the coordinates of the atoms in the unit cell are given by the coordinates of
the peak maxima. The assignment of peaks to particular atoms is made from the
relative heights of the electron density peaks: the peak height is proportional to
the number of electrons possessed by that atom, which apart from very light
atoms is approximately equal to the atomic number of that atom. In Fig. 5.39,
two types of peak of relative heights 100 and SO0, are seen; these are assigned to
chlorine and sodium, respectively. (The atomic numbers of chlorine and sodium
are 17 and 11; for ions, the number of electrons are 18 (C17) and 10(Na™). The
¢xperimental maxima are therefore in fair agreement with the expected values.)
Electron density maps also show that our mental picture of atoms as spheres is
essentially correct, at least on a time average. The electron density drops to
almost zero at some point along the line connecting pairs of adjacent atoms in
Fig. 5.39 and this supports the model of ionic bonding in NaCl. In other
structures which have covalent bonding, there is residual electron density
between atoms on the electron density map. However, in other than very simple
structures, such as the alkali halides, there is one serious difficulty in using an
electron density map to determine quantitatively the distribution of valence
clectrons. In most structure refinements, both the position and thermal vibration
factors of atoms are allowed to vary in order to achieve the best agreement
between measured and calculated structure factors and intensities. The final
purameters may represent a compromise, therefore, and the electron density map,
which is greatly influenced by the thermal vibration factors, is not necessarily a
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true representation of the distribution of valence electrons. In refining more
simple structures, the atomic coordinates are usually known exactly; this gives
rather more accuracy to the thermal vibration factors (or temperature factors)
and hence to the electron density map.

5.6 Modern X-ray powder techniques and their applications

5.6.1 Powder diffractometers

The most commonly used powder X-ray instrument is the powder diffracto-
meter. Its mode of operation is outlined in Section 5.4.1. It has a proportional,
scintillation or Geiger counter as the detector which is connected to a chart
recorder or sometimes to a means of digital output. In normal use, the counter is
set to scan over a range of 26 values at a constant angular velocity (it is common
_-practice to refer to the angle 26 between diffracted and undiffracted beams, rather
than to the Bragg angle, 6). Usually, the range 10 to 80° 26 is sufficient to cover the
. most useful part of the powder pattern. A typical diffractometer trace is shown in
- Fig. 18.6a for SiO,. The scale is linear in 26 and the d-spacings of the peaks may
be calculated from Bragg’s Law or obtained from standard tables of d versus 26.
The scanning speed of the counter is usually 2° 20 min ~! and, therefore, about
30 min are needed to obtain a trace. Intensities are taken as peak heights, unless
very accurate work is being done, in which case areas may be measured ; the most
intense peak is given intensity of 100 and the rest are scaled accordingly.

If very accurate d-spacings or intensities are desired, slower scanning speeds (e.g.
1°260 min ") are used. To obtain accurate d-spacings, an internal standard (a pure
material, such as KCl, whose d-spacings are known accurately) is mixed in with
the sample. A correction factor, which may vary with 20, is obtained from the
discrepancy between observed and true d-spacings of the standard and is then

applied to the pattern that is being measured. Accurate intensities are obtained’

from peak areas by cutting out the peaks and weighing them, by measuring their
area with a device such as a planimeter or by using an automatic counter fitted to
the diffractometer. ‘

Samples for diffractometry take various forms: they include thin layers of the
fine powder sprinkled onto a glass slide smeared with vaseline and thin flakes
pressed onto a glass slide. Different people prefer different methods of sample
preparation and the objective is always to obtain a sample which contains a
random arrangement of crystal orientations. If the crystal arrangement is not
random, then preferred orientation exists and can introduce errors, sometimes
very large, into the measured intensities. Preferred orientation is a serious
problem for materials that crystallize in a characteristic, very non-spherical
shape, e.g. clay minerals which usually occur as thin plates or some cubic
materials which crystallize as cubes and, on crushing, break up into smaller cubes.
In a powder aggregate of such materials, the crystals tend to sit on their faces,
resulting in a far from random average orientation.

The big disadvantage of early Debye—Scherrer cameras is that incident and
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Fig. 5.40 (a) Theorem of a circle used to focus X-rays. (b) Arrangement of sample, source
and detector on the circumference of a circle

diffracted beams are, inevitably, somewhat divergent and of low intensity. In
diffractometers and modern focusing cameras, a convergent X-ray beam is used;
this gives a dramatic improvement in resolution and, because much more intense
beams may be used, exposure times are greatly reduced. It is not possible to focus
or converge X-rays using the X-ray equivalent of an optical lens; instead, use is
made of certain geometric properties of the circle in order to obtain a convergent
X-ray beam. These properties are illustrated in Fig. 5.40(a). The arc XY forms
part of a circle and all angles subtended on the circumference of this circle by the
arc XY are equal,i.e. XCY = XC'Y = XC"Y = a. Suppose that X is a source of X-
rays and XC, XC' represent the extremities of a divergent X-ray beam emitted
from X. If the beam is diffracted by a sample which covers the arc between C and
C’ such that the diffracting planes are tangential to the circle, then the diffracted
beam, represented by CY and C'Y, will focus to a point at Y. The principle of the
focusing method is therefore to arrange that the source of X-rays, the sample and
the detector all lie on the circumference of a circle (Fig. 5.40b).

The focusing geometry of the diffractometer is shown schematically in
Fig. 5.41. The focusing circle is dashed and has the source, S, sample and the
receiving slit of the detector at F, all on its circumference. The focusing circle is
not of constant size but decreases in radius as the Bragg angle 6 increases
(movement of F around the diffractometer circle with increasing 6 is indicated by
the arrow). The importance of having a flat sample surface can be seen (ideally it
should be curved and change its radius of curvature with scanning angle, but this
is not practicable); if the surface is uneven, or deviates much from the
circumference of the circle, then the focusing action is lost.

The solid circle in Fig. 5.41 is the diffractometer circle and is of constant size.
The sample is at its centre and the detector, F, scans around its circumference. In
order to preserve the focusing action with changing 26, the surface of the sample
must stay tangential to the focusing circle. This is achieved by coupling the
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focusing circle

— —

diffractometer
circle

Fig. 5.41 Focusing geometry of the

diffractometer

sample to the detector so that as the detector scans at angular velocity 20 min™?,

the sample rotates in the same direction at  min~ L

5.6.2 Focusing (Guinier) cameras

The same focusing principle that is basic to the construction of diffractometers
is also used in focusing cameras, although several different arrangements are ]
found in commercial instruments. An addition feature of focusing cameras is the
inclusion of a crystal monochromator which serves two functions: to give highly a
monochromatic radiation and to produce an intense, convergent X-ray beam. '
There are several sources of background scattering in diffraction experiments
(Section 5.6.8), one of which is the presence of radiation of wavelength different
from that of the K« radiation. K« radiation may be separated from the rest by the .
use of filters or, better, by a crystal monochromator.

A crystal monochromator consists of a large single crystal of, for examplé,
quartz, oriented such that one set of planes which diffracts strongly (1011 for
quartz) is at the Bragg angle to the incident beam. This Bragg angle is calculated
for A,, and so only the K«, rays are diffracted, giving monochromatic radiation. '
(In fact, overtone reflections may occur because the (2022) planes diffract X-rays
of wavelength 14, at the same Bragg angle. It is an easy matter to ensure that
these overtone reflections have weak or negligible intensity.) If a flat crystal ‘
monochromator were used, much of the Ka radiation would be lost since the X3
ray beam emitted from a source is naturally divergent; only a small amount of the
Ko component would therefore be at the correct Bragg angle to the monochr
mator. To improve the efficiency, the crystal monochromator is bent, in whic|
case a divergent X-ray beam may be used which is diffracted by the crystal'
monochromator to give a beam that is intense, monochromatic and convergent.

The arrangement of a focusing or Guinier camera which uses a crystdl ]
monochromator M and also makes use of the theorem of the circle described |
above is shown in Fig. 5.42. The convergent beam of monochromatic radiation 1
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M

Fig. 5.42 Crystal monochromator M, source S and sample X, in a focusing
camera

passes through the sample at X. Radiation that is not diffracted comes to a focus
at A, where a beam stop is placed in front of the film to prevent its blackening.
Various beams diffracted by the sample focus at B, C, etc. We know from the
theor.em Qf the circle that A, B, C and X must lie on the circumference of a circle
The f'llm is placed in a cassette which is in the form of a short cylinder and lies 0n'
the circle ABC. The scale of the film is linear in 26, as is the chart output from a
diffractometer. A schematic film is as shown in Fig. 3.1 except that instead of
peaks of different height, lines of different intensity or different degrees of
blackngss are seen. Film dimensions are ~ 1 x 15¢cm which makes them very
convenient to handle. The line at 0°26 or oo d-spacing corresponds to the
llndlffracted beam at A in Fig. 5.42. This is the reference position on the film. The
mark is made by removing the beam stop for a fraction of a second while t};e X-
rays are switched on. If required, a scale may be printed onto the film and the
positions of the lines, relative to A, may be measured with a travelling microscope
or, better, by microdensitometry; 26 values and d-spacings may then be
computed or obtained from tables.

The Guinier method is capable of giving accurate d-spacings, if desired, and the
rcsult§ are comparable to those obtained by diffractometry using véry slow
scanning speeds. Intensities of the lines on the films are either estimated visually
or may be measured quantitatively using microdensitometry. Sample sizes are
very small, 1 mg or less, and necessary exposure times vary between 5 min and
I hr, depending on factors such as the crystallinity of the sample and the presence
or absence of heavy elements which absorb X-rays.

5.6.3 Measurement of powder patterns and comparison of
diffractometry with film methods

A powder pattern has three main features that may be measured quanti-

tatively. In decreasing order of relative im i
y. € portance, these are (a) d-s
intensities and (c) line profiles. ' (@) dspacings,
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5.6.3.1 d-spacings

For routine measurements and for purposes of identification, no special care
need be taken over sample preparation nor in the measurement of the film or
diffractometer trace. For identification of completely unknown materials,
diffractometry is probably quicker and somewhat easier. It is important to have
approximate intensity values as well as reasonably accurate d-spacings and both
may be determined directly from the diffractometer chart. Further, with film
methods, there is a delay time of 1 to 2 hours during which the film is developed
and prepared ready for examination.

The great advantage of film methods over diffractometry occurs when the
powder patterns of different samples are to be compared. It is almost impossible
to compare several 1 metre lengths of chart paper by trying to match or superpose
the different traces. Yet with small Guinier films, several may be compared
directly on a viewing screen. For work in specific areas, e.g. clay minerals, one can
soon build up a file of standard films of all the phases likely to be encountered.
Identification of unknowns and, probably more important, mixtures of un-
knowns then becomes straightforward and rapid.

For accurate measurement of d-spacings, diffractometry is normally regarded f
as the best method and most of the patterns in the powder diffraction file have }

been obtained by diffractometry. An internal standard of accurately known d-
spacings must be added to the sample in order to eliminate instrumental error. A

slow scanning speed, e.g. §° 26 min "~ 1 is used so that the scale of the trace may be §

greatly expanded, and if possible only high angle reflections are used. A powder
pattern obtained by either diffractometry or film methods is squashed up at its

low angle end and hence accurate d-spacings are best measured in the back-
reflection region using high angle reflections. Care must be taken that the

diffractometer is well adjusted and that a smooth sample surface is presented to

the incident beam so as to give good focusing action. The disadvantage of this |
method is that with the slow scanning speeds several hours may be needed to

record a significant part of the powder pattern.

The superiority of diffractometry for accurate measurement of d-spacings is 4

now being challenged by advances in focusing camera techniques. Both the

position and intensity of lines may be determined from a microdensitometric scan
of a Guinier film. The resulting d-spacings may be as accurate as those obtained

by diffractometry and the process is much quicker: only a short exposure time is

required to take the photograph, irrespective of the subsequent use that is made §
of the film. ]

5.6.3.2 Intensities

It is by no means a straightforward exercise to obtain reliable powder X-ray |

intensity data. Sample preparation is very important as it may be difficult if not §

impossible to avoid preferred orientation of crystals within the powder specimen, §

Powders should be ground down, preferably to size of 1 to 10 um, and it may be
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Table 5.9 Comparison of diffractometers and focusing cameras

Feature Diffractometer Focusing camera

Exposure time

30 min usuall in—
Accuracy of 26 values y 10 min-1 hr

Good-very good Good-very good

Intensities Ver i
y good Poor-fair
gza;ll( shz}pe i Very good Poor-fair
parison of different Poor (clums
mpats ( y) Excellent
Resolution of closely Good-excellent Excellent

spaced lines

Amount of sample required 0.05-2 g ~1mg

Storage and retrieval of Clumsy, unless done by  Easy
results computer

Approximate cost of equip- £15000 £5000
ment (excluding generator)

For compari ; i . : X .‘ .
Philips) parison purposes the following were used: 1020 diffractometer; Higg focusing camera (both

worthwhile to sieve samples prior to X-ray diffraction. One or two large (e.g.
.1 mm .dlameter) crystals in an otherwise fine powder can cause havoc with
intensity measurements.

Intensities are normally measured by diffractometry, as peak heights or peak
areas at slow scanning speeds. It is difficult to obtain quantitative intensities from
films unless a microdensitometer is also available.

5.6.3.3 Peak shape (line profiles)

' For certain specialized applications, the shape of peaks may yield valuable
information. Peaks have a finite breadth, for reasons to be discussed later, but
e).(tra broadening may occur if (a) stresses are present in the crystals, e.g. in tr’letal
pieces that have been cold worked (Section 5.6.6), or (b) the size of the crystals is
less than about 2000A diameter (Section 5.6.5). The standard method for
measuring peak profiles is diffractometry.

T Ele relative merits of diffractometers and focusing cameras are summarized in
able 5.9.

5.6.4 High temperature powder diffraction

. Several commercial instruments are available for recording powder patterns at
high temperatures. Some are diffractometers fitted with a small furnace around
the sample. The powder pattern is recorded in exactly the same way as for room
lcmp_eg'a_ture operations. Inert, refractory construction materials such as tungsten
und'mdlum are used and very high temperatures, ¢.g. 2000 °C, are attainable.

Film methods are also available and a particularly elegant one is the Guinier—
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'Fig. 5.43 Schematic high temperature Guinier powder photograph of
Li,ZnSiO,

Lenne camera which operates up to ~ 1200 f’C. A thin powdered fspecxmcxI)’:
mounted on a fine platinum gauze is suspended in the middle of a small furnace. \
quartz crystal monochromator is used to provide a convergent X-ray beam an

the diffraction pattern is recorded on film by the focusing method. The sample * §

and furnace may be programmed to heat or cool at a certain rate apd a
continuous X-ray photograph is taken. The film is rectangular and bent to lic on

the focusing circle (cylinder) of the camera. It can be trar.lslat'ed ata cc(!)nstatllrllt
velocity such that only a narrow strip of film, e.g. 5 mm wide, is exposed to the 0
diffracted X-ray beams at any one time. A schematic photograph showing the

- polymorphic changes that occur on heating Li,ZnSiO, is shown in Fig. 5.43.The

horizontal axis is 26 or d-spacing, as usual, and the vertical axis 1s temperau(lir?é :
One advantage of this particular camera is that because a continuous record 18 =

obtained, it is possible to follow phase transformations directly. This is often

more useful than having two separate patterns that had been recorded before anfi i

after the changes involved took place.

Let us briefly consider the changes that appear on the photogra?h. With ii
o€ g MC, y, Li,ZnSiO, is obser- |
ved. For the f, — B, transition, some of the lines in the BI.POWC}CI‘ gattcinr?;rtrilfz
disappear to give the powder pattern of B,,- Such a 'trar_lsmon is charac et tiona} |
order—disorder phenomena (in this case, the ordering 1s probably orien adv re& §
ordering of MO, tetrahedra) in which the low temperature phase 1s an ordered

increasing temperature, the sequence i

superstructure of the disordered high temperature phase. The By ="n transt;;f)iﬁ
is rather different in that some of the By, lines dlsappear and new lines ap].aeat |
the y, powder pattern. This indicates that some major structural reorganizati

. . . . . ! i¥
occurs during the transition. The discontinuity in some of the lines 1nd1cateis th.?t ]
a change in volume accompanies the By — y, transition and allows us to classity |

the transition thermodynamically as first order (see Chapter 12).
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High temperature powder diffraction is invaluable for identifying and studying
phases that exist only at high temperatures. Many phases, e.g. f-quartz stable
above 573 °C, undergo a phase change during cooling(to a-quartz) and no matter
how fast the cooling rate, the transition cannot be suppressed. The only way to
study such phases is, therefore, at high temperatures. ‘

A more technical application of high temperature powder diffraction is in the
measurement of coefficients of thermal expansion, data which for some materials
may be very difficult to obtain using conventional dilatometry. For non-cubic
crystals, the expansion is usually anisotropic and the different axial expansion
coefficients may be determined readily by the X-ray method. Knowledge of
expansion coefficients is very important for materials that are used in high
temperature environments or which experience large temperature changes
during use, e.g. some metals and ceramics.

5.6.5 Effect of crystal size on the powder pattern—particle size measurement

If the average crystal size in a powder is below a certain limit ( ~ 2000A
diameter), additional broadening of diffracted X-ray beams occurs. From
measurement of this extra broadening an average particle size may be obtained.
In the absence of extra broadening due to small particle size, powder lines or
peaks have a finite breadth for several reasons: the radiation is not absolutely
monochromatic, the Ka line has an intrinsic breadth due to the Heisenberg
uncertainty principle and the focusing geometry of the instrument may not be
perfect for a variety of reasons. In order to understand why small particle size
leads to line broadening it is necessary to consider the conditions under which
diffraction may occur if the incident angle is slightly different from the Bragg
angle, 0. A qualitative explanation is as follows.

The Bragg angle represents the condition under which each plane in a crystal
diffracts exactly one wavelength later than the preceding plane. All diffracted
beams are therefore in phase and constructive interference occurs. For an
incident beam at a slightly greater angle, 6,(Fig. 5.44), there is a phase lag of
slightly greater than one wavelength, 4 + 4, for rays diffracted from subsequent
planes. By the time the (j + 1)th plane is reached, let the cumulative, incremental

Fig. 5.44 Broadening of X-ray reflections due to small
] particle size

-1
+1
j-1

J
J
J
2
2
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phase lag Y 64, be equal to half a wavelength; ie.
joA=4/2

Planes 1 and (j + 1) are exactly 7 out of phase for radiation that is mgldegt;?:l

diffracted at 8, and, therefore, cancel each_ oth:aré If tl:zl ‘(;gfsttglzc;(r)gtg:;i atol
j hen the net diffracted intensity at 0, 15 |

(r):yzsj gilg::cst,eti from planes 1 — j exactly cancel the rays foractgdfrors p(])??ﬁz

(j + 1)—2j. The angular range fgto 0, is the range over which the in .en.sl 3' of e

diffracted beam falls from a maximum, a.t 0y, to zero, at '01. A s;mlea; power

limiting angle, 0,, occurs for which rays diffracted from adjacent plan

phase difference of 4 — oA

The magnitude of the angular range 8, to 0,, and hence the breadth of the

diffraction peak, is governed by the number of plar.les.2.j, and henge t‘l:le Zg:;?i
thickness. If the number of planes is very l.ar_ge, no significant broa etln agcce urs
because 64 and therefore (6,-0,) is negligibly small. The co.mmon y p
formula for particle size broadening is the Scherrer formula:

= _0_%_ (5.20)
Bcos 6y

where tis the t

B = 0-0059 rad
A=15418 A
MgO,ZE)O line, 95= 215°
2106 4 { = 250A
>
5’ KCt, 220 line,
& 2224 A
Z By= 041
= 0:0072 rad e - 023"
0-004 rad
1 1 1 1 !
44 43 42 41 40
DEGREES 26
Fig. 545 Part of a diffractometer trace for a mixture of MgO (smail

particle size) and KCl (internal standard)

hickness of the crystal (in angstroms), A the X-ray wavelength and .
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0y the Bragg angle. The line broadening, B, is measured from the extra peak width
at half the peak height and is obtained from the Warren formula:

B* =By~ B} (5.21)

where By, is the measured peak width in radians at half peak height (Fig. 5.45) and
By is the corresponding width of a peak of a standard material, mixed in with the
sample, whose particle size is considerably greater than 2000 A and which has a
diffraction peak near to the relevant peak of the sample.

With good experimental techniques, broadening of high angle lines may be
detected for crystal thickness up to ~ 2000A (e.g. for a crystal containing 2000
planes of d-spacing 1 A). For a thickness of 50 to 500 A the broadening is very easy
to detect and measure (Fig. 5.45). The lower limit of detection occurs when the
peaks become so broad that they disappear into the background radiation. For
very small particle size, it is best to use low angle peaks if possible because, for a
given crystal thickness, the broadening increases with angle. In extreme cases,
peaks may be observable at low angles while high angle peaks cannot be
distinguished from the background.

5.6.6 Effect of stress on a powder pattern

Crystals that are under stress may exhibit anomalous powder patterns. The
whole powder pattern may be shifted to lower d-spacings if the crystals are under
a uniform compressive stress such that a contraction of the unit cell occurs. If the
stress is non-uniform, different crystals or different parts of the same crystal may
be deformed to differing degrees and the powder lines become broadened.
Commonly, both effects occur and lines may be both displaced and broadened.

Stresses may be (a) caused by the application of an external pressure or (b)
generated internally as a consequence of a chemical reaction taking place inside
the crystals. An example of (a) is the work hardening of metals in which residual
distortions are present in the crystals after treatment. Examples of (b) are more
varied and include coherent precipitation of supersaturated solid solutions (age
hardening of metals and ceramics) and the occurrence of some phase transitions
during cooling (if there is a change in volume or shape of the crystals and they are
embedded in a solid matrix, then the rigid environment of the matrix may
prevent the transition from occurring to completion).

5.6.7 Refinement of unit cell parameters and indexing of powder patterns

Unit cell parameters are often determined with the aid of single crystal X-ray
photographs. The symmetry or unit cell type is first obtained from an inspection
of the photographs. Positions of selected spots are then measured as accurately as
possible to give values for the unit cell parameters. There are several intrinsic
limitations to the accuracy of the values thus obtained—lack of internal
sandard, shrinkage of film, etc.—and accuracy of axial parameters is usually to
between 0.05 and 0.2 per cent. Angles (for monoclinic and triclinic unit cells) can
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usually be measured to about 1°*. For many materials and applications, such
values are sufficiently accurate, e.g. if determination of the unit cell is merely one
step in solving a crystal structure. It is very often the case, however, especially in
solid state chemistry, that there is intrinsic interest in the powder patterns of
crystalline phases and more accurate cell dimensions are desired. It is usually
essential to assign Miller indices to the powder lines and often a line cannot be
indexed unambiguously if the cell parameters are known only approximately: On
the other hand, accurate cell parameters may be obtained from a least squares
refinement on the d-spacings of at least several high angle powder lines whose
indexing is known for certain. A circular situation may exist in which the
determination of accurate lattice parameters and indexing of the powder pattern
are intimately related and one is not possible without knowledge of the other.
Usually, with patience, the problem can be solved by an iterative method 4
especially if at least a few low angle lines may be indexed unambiguously.
Least squares refinement of their d-spacings lead to more accurate cell par- '}
ameters. The theoretical d-spacings calculated for these new cell parameters |
then enable a few more lines to be indexed with certainty and the least squares
cycle is repeated. By this method, axial parameters may be obtained routinely
accurate to 0.002 per cent and angles accurate to ~ 0.1°.

For powder patterns which are particularly difficult to index, i.e. for which
there are two or more plausible sets of (hkl) values for some or all of the lines, .}
single crystal photographs may be additionally useful. The intensities of the
various candidate (hkl) reflections may be estimated qualitatively from the
indexed single crystal photographs and the strongest of these almost certainly
corresponds to the reflection that gives the powder line. This is because spots
that are weak on single crystal photographs are not usually observed in powder
photographs unless the latter are grossly overexposed.

Various computer programs are available with which one can supposedly
index powder patterns without the necessity for prior knowledge of the crystal
system. Great care must be exercised in using these programs since they can give
information on the unit cell and cell parameters which may be incorrect or
misleading. If one has an independent check that a particular unit cell, which
has been used in the program to index the powder lines, is indeed the correct,
one, then these programs are useful; if not, the results are, at best, only
tentative. o

Problems may arise particularly for crystals which have neither cubic no
triclinic crystal systems. For cubic materials, the d-spacings are controlled b
only one parameter, the cubic cell edge a, and it is a straight forward mat|
to index cubic powder patterns. For triclinic crystals, there is no single unit §
cell which is the correct one and the choice of unit cell is of no great
consequence. For all other crystal systems, however, the powder patterns are §
controlled by two or more variables and computer fitting of d-spacing data §
with speculative unit cell parameters is not necessarily reliable. i

*Greater accuracy is obtained using modern single crystal diffractometers, typically 0.03% fo
axes and = 0.05° for angles. :
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5.6.8 Sources of background radiation—fluorescence

Tl}e quality of an X-ray powder diffraction pattern is governed to a
cons1§erable extent by the level of background radiation which is present. In mild
cases it may be difficult to pick out the weaker reflections but in serious (':ases as
WhCI.l fluorescence occurs, the intensity of all the diffracted beams may be reduc’:ed
g(;xclzlrcierably at the same time that a large increase in background scattering

Several sources of background scattering, with their remedies, are as follows:

(a) Collli.sions ‘bc_etween air molecules and diffracted X-ray beams. For high
?l:lea Slgn (311:1;1;3 ffc;;:llrlfm g films it is worth while to evacuate the box containing

(b) The presence of white radiation in the incident beam. This is best eliminated
by using a single crystal monochromator.

(¢) Fluorescence. This occurs when the sample acts as a sécondary source of X-
rays. If the fluorescent radiation is weak it may be absorbed by placing a filter
be'tv&feen the sample and detector, e.g. a strip of nickel foil placed over the film
If 1t11s §trong, it is best to change the wavelength of the primary beam, e.g. b);
;c;;oal;ul:)lélegnirrln f;?égum containing a copper target by one with an iron or

Fluorescence occurs when the radiation in the primary beam (i.e. emitted
by the copper target) knocks out inner shell electrons within atoms of the
§ample. Electrons in the outer shells drop down to occupy empty levels in the
inner shells and, in so doing, they emit their excess energy in the form of X-
rays. The sample is therefore acting as a secondary source of X-rays. The
amount of fluorescent radiation produced in this way depends on the at.omic
number of the atoms in the sample relative to that of the target material and is
best seen by example. Cu Ko radiation, of wavelength 1.5418 A, is generated
by thc.: electronic transition 2p — 1s (Fig. 5.1). In order to creat’e a vac;mt Is
level in the first place, the 1s— oo ionization potential is needed and this
energy difference corresponds to a wavelength for copper of 1.3804A
Fig. 3.19. Incident X-rays of wavelength somewhat less than or e.qual t<;
}.3304/& may therefore ionize a Cu/1s electron. Similarly, Cu Ko X-rays may
ionize electrons in atoms whose ionization energy has a value correspondin
to A > 1.5418 A. Ionization potentials of 1s electrons in nickel, cobalt and irorgl
corregpopd to 1.4880, 1.6081 and 1.7433A and therefore éu Ko radiation
may ionize Is electrons in cobalt and iron but not in nickel. Samples
containing cobalt and iron fluoresce strongly in Cu Ka radiation. Lighter
atorps ?lso fluoresce, but less strongly, since fluorescence is strongest when
the incident radiation has a wavelength that is only slightly shorter than the
absorption edge (= IP) of the atoms.

{d) Compton scattering. When an X-ray beam strikes a sample two types of
scattered X-rays are produced. In the first, the incident beam sets the
f:lec?trons of the atoms in to vibration; X-rays of the same wavelength as the
incident beam are re-emitted and are the characteristic diffracted radiation
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with which we are familiar. This is called coherent, unmodified radiation. The
incident X-ray beam may also interact inelastically with the outer, more
loosely bound electrons of the sample atoms. Some of the energy of the X-rays
is inevitably lost and the resulting scattered X-rays, modified Compton X-rays,
have slightly longer wavelength than the incident beam. Compton scattering
contributes to the general background scatter and is particularly serious for
the lighter elements. For this reason, organic and organic-based (e.g.
polymeric) materials may give poor quality powder patterns, due to the
combined effects of reduced diffracted intensity and increased background
intensity. The intensity of Compton scattering increases with increasing angle
(in contrast to diffracted radiation which decreases in intensity at higher
angles; see Section 5.5) and so it is common to see powder patterns of, for
example, polymers which have well-defined strong lines at high d-spacings
but only a general background scattering at lower d-spacings. There is no real
remedy for Compton scattering. '
(e) Crystal imperfections and temperature diffuse scattering. Any kind of
imperfection in the crystals of the sample causes a certain amount of diffuse
scattering at angles other than the various Bragg angles. It cannot be avoided.
The ideal powder pattern is obtained for crystals with perfect three-
dimensional regularity, free from strain, imperfections, surface effects and at
absolute zero. The effect of small particle size and non-uniform stress on
powder peaks has been mentioned earlier. Atomic vibrations are an
important source of diffuse scattering and these increase as the melting point

is approached. It is particularly noticeable in high temperature powder A

diffraction results that the intensities of powder lines get progressively weaker
as the temperature is raised and at the same time the background scattering
increases. A useful guideline is that for a given material and set of conditions
the total diffracted intensity is constant. If peak intensities are reduced, the
intensity must reappear elsewhere—probably in the background.

5.6.9 A powder pattern is a crystal’s ‘fingerprint’

The powder X-ray diffraction method is very important and useful in

qualitative phase analysis because every crystalline material has its own 4

characteristic powder pattern; indeed, the method is often called the powder

fingerprint method. There are two main factors which determine powder . k.

patterns: (a) the size and shape of the unit cell and (b) the atomic number and
position of the various atoms in the cell. Thus, two materials may have the same

crystal structure but almost certainly they have quite distinct powder patterns. ; ¢
For example, KF, KCl and Kl all have the rock salt structure and should show . §
the same set of lines in their powder patterns, but, as can be seen from Table 5.7,

both the positions and intensities of the lines are different in each. The positions
or d-spacings of the lines are shifted because the unit cells are of different size and,
therefore, the a parameter in the d-spacing formula varies. Intensities are different
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because different anions with different atomic numbers and therefore different
scattering powers are present in the three materials, even though the atomic
coordinates are the same for each (i.e. cations at corner and face centre positions,
etc). KCl is a rather extreme example because the intensities of 111 and 311
reflections are too small to measure, but it serves to illustrate the importance of
scattering power of the atoms present. Intensities are discussed in more detail in
Section 5.5.

The powder pattern has two characteristic features, therefore: the d-spacings of
the lines and their intensity. Of the two, the d-spacing is far more useful and
capable of precise measurement. The d-spacings should be reproducible from
sample to sample unless impurities are present to form a solid solution or the
material is in some stressed, disordered or metastable condition. On the other
hand, intensities are more difficult to measure quantitatively and often vary
from sample to sample. Intensities can usually be measured only semi-quan-
titatively and may show variation of, say, 20 per cent from sample to sample
(much more if preferred crystal orientation is present). Thus, the differences
in tabulated intensities for, say, the 220 reflection of the three materials in
Table 5.7 are probably not too significant.

The likelihood of two materials having the same cell parameters and d-
spacings decreases considerably with decreasing crystal symmetry. Thus, cubic
materials have only one variable, 4, and there is a fair chance of finding two
materials with the same a value. On the other hand, triclinic powder patterns
have six variables, a,b,c,«, § and 7, and so accidental coincidences are far less
likely. Problems of identification, if they occur at all, are most likely to be
experienced with high symmetry, especially cubic, materials.

5.6.10 Structure determination from powder patterns

Although structure determination is normally carried out using single crystal
X-ray data, there are instances where powder data can be used and may even be
advantageous. The structures of metals and alloys have generally been solved
from powder data. They are often cubic, hexagonal or tetragonal and it is a
straightforward exercise to index their powder patterns and calculate the cell
dimensions. Many or all of the atoms in the unit cell lie on special positions such
as the origin, face centres, body centres, etc., and so the number of positional
parameters which is variable and must be determined is either small or zero. The
proposed structure can then be confirmed by comparing the intensities calculated
from the model with those observed experimentally; there may be only 5 to 10
lines observed in the powder pattern but this is sufficient for the purpose.

Structure determination of non-metallic materials by the powder method is
rather more difficult because these materials often have unit cells of low symmetry
and/or there are a considerable number of positional variables for the atoms in
the unit cell. Occasionally, if a suitable single crystal of the new phase cannot be
obtained and if the crystal system and unit cell parameters may be determined
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by electron diffraction, the powder intensities may be used for a structure
determination (electron diffraction intensities are very unreliable, even when
compared with powder X-ray intensities). The limit to the complexity of
structure which can be tested is governed by the number of powder lines
whose intensities can be measured and whose indexing is known for certain.
Solving a structure is akin to solving a set of simultaneous equations; there
must not be more variables than equations if the equations are to be solved.

Although the powder method is not often used for the determination of
completely unknown structures it does have many secondary uses related to
crystal structures and can be a relatively quick method of obtaining results. For
example, suppose that one has prepared a new phase which apparently has a
perovskite structure. Computer programs are available which generate a
calculated powder pattern from a given set of atomic coordinates. Into the

program are fed the coordinates of the proposed structure together with the .

scattering factor data for the atoms in the structure. The program then calculates
the intensities of all possible reflections and these may be compared with the
observed powder intensities of the new phase in order to judge whether or not the
postulated structure is correct.

In the above example, no refinement in atomic coordinates of a proposed
structure is carried out; all that is done is to test a proposed model for
correctness. Other cases exist where a limited part of a structure may be in doubt
and powder data may be used to decide which of the various possibilities is
correct. Good examples are spinels. These may be normal, inverse or in-
termediate; the different forms are distinguished by the way in which some or all
of the cations arrange themselves over the available sites. For a particular
material the powder pattern may be calculated for different cation arrangements
and that which gives best agreement between observed and calculated intensities
is probably correct. For problems such as this there is really no need for single
crystal data and solution of the problem can be obtained within a matter of days
instead of the weeks or months that are needed to carry out a single crystal
analysis.

It has already been mentioned that powder data may be used for the study of
materials which cannot be prepared in suitable-sized single crystal form. A
related use is in the crystallographic study of materials at high temperatures.
High temperature single crystal methods are not often used whereas high
temperature powder diffractometry is an established technique. The structural
transition at ~270°C in cristobalite, SiO,, has been followed by powder
diffractometry. The structure of the high temperature form was solved—it has a
disordered structure with a choice of six positions for each oxygen in a non-linear
Si—O-Si bridge—and the changes that occur during the low~high transition
were deduced. )

Powder X-ray methods are invaluable for obtaining structural information
about solid solutions—substitutional, interstitial or otherwise—and order-
disorder phenomena in, for example, alloys. A further discussion is given in
Chapter 10.
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5.6.11 Powder patterns from single crystals—the Gandolfi camera

There are several instances where it may be desirable to have the powder
pattern appropriate to a single crystal sample. To achieve this, a modified Debye—
Scherrer camera, known as the Gandolfi camera, is used. In this camera, the
crystal sample is stuck onto a fibre and mounted on a rotation device. This device
causes the crystal to rotate, simultaneously and at different angular velocities,
about two axes. Over a period of time, the crystal presents itself to the X-ray beam
in a very large number of orientations. A completely random time-averaged
orientation of the crystal is not achieved but nevertheless a sufficiently large
number of orientations is presented that a recognizable powder pattern may be
obtained after an exposure time of 1 to 2 days.

The Gandolfi camera is used in mineralogy in cases where a specimen is rare or
unusual and should be preserved intact rather than crushed up in order to take a
conventional X-ray powder pattern. In other cases only one or two grains of a
particular crystalline phase may be available and there is insufficient material for
a conventional powder pattern.

3.6.12 Powder patterns calculated from crystal structure data

Crystal structures are solved using intensity data, usually from single crystals
but occasionally from powders (Section 5.6.10). It is sometimes useful to carry out
the reverse exercise and, for a known crystal structure, calculate the correspond-
ing powder pattern. This involves calculation of the d-spacings at which lines
appear and their corresponding intensities. Calculation of d-spacings is
straightforward and requires knowledge only of the unit cell dimensions and the
appropriate d-spacing formula (see Section 5.3.7 and Appendix 6). Calculation of
intensities is a little more complicated and requires a knowledge of the crystal
structure and, in particular, the coordinates of all the atoms in the unit cell. The
first step is to calculate the structure factors, F£2i<, for all possible reflections of
interest. The procedure for doing this is given in Section 5.5.3. The second step is
to convert the structure factors to intensities (equation 5.18) and correct for the L,
factors and multiplicities.

Calculated powder patterns have several uses. They can bé used:

(a) to provide reference intensity data for materials which are subject to preferred
orientation, e.g. crystals with a platy texture,

(b) to show that a single crystal, whose structure has been solved, is repre-
sentative of a bulk sample from which the crystal was taken,

(¢) if observed and calculated powder patterns match well, to confirm that a new
crystalline phase has the crystal structure which has been postulated for it,

(d) to generate powder patterns for hypothetical crystal structures and

(¢) toassist in indexing complex powder patterns, i.e. in deciding the appropriate
hk! values for a particular powder line.
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rns of cubic and tetragonal BaTiO, showing the influence of crystaf symmetry and

multiplicities on the number of lines that are observed.

Fig. 5.46 Powder patte
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5.6.13 Influence of crystal symmetry and multiplicities on powder patterns

A general observation about the relative complexity of powder patterns is that
the number of lines which appear increases with decreasing crystal symmetry.
Thus, simple cubic substances give only a few lines whereas triclinic materials
may give up to a hundred. This is explained in Section 5.3.10 as being due to the
effect of multiplicity ; cubic materials do have a large number of lines, just as many
as a material with a similar sized, triclinic unit cell, but in cubic materials, many of
the lines overlap and the number of distinct lines that may be seen is greatly
reduced. A simple example of this is shown in Fig. 5.46; schematic powder
patterns are given for two polymorphs of the perovskite phase, BaTiO,. One
polymorph is cubic. The other is tetragonal but the distortion from a cubic-
shaped unit cell is not large; the c axis is about 1 per cent longer than a. As can be
seen in Fig. 5.46, the tetragonal distortion leads to an increase in the number of
observed powder lines. Thus 001 and 100 appear as separate lines because they
have different d-spacings, whereas they overlap in the cubic polymorph; similarly
110 and 101 ( = 011) appear as separate lines in the tetragonal polymorph but
overlap in the cubic form. Not all lines in the cubic form separate into' doublets in

“LITHIUM SILICATE"?
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Li,Si04
b)

Li,Si0,
©)

INTENSITY ——>

[ ‘ l !‘ |
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@ ‘
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Fig. 5.47 Powder patterns of (a) a bottle iabelled ‘lithium silicate’ and (b)
to (e) standard lithium silicate and silica phases
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the tetragonal form, however. Thus, 111 stays as a single line but 102 separates
into three lines, 102, 201 and 210.

5.6.14 Powder patterns of mixtures of phases

Mixtures of crystalline phases may be analysed very easily and effective;ly using
Guinier films. An illustration of the method is givenin Fig. 5 .4.17..Some time ago,
the author purchased a bottle of what was advertised as Li,SiO,. The bottle f
arrived labelled ‘lithium silicate’; part of its X-ray powder pattern is shown
schematically in(a) together with patterns of standard lithium silicate phases .and
silica in (b) to (¢). Comparison of the films showed that the bottle contained
predominantly Li,SiO; and a small amount of quartz, but none of the expected
phase, Li,SiO, !

Questions

5.1 Using the Ko, data of Table 5.1, verify graphically Moseley’s Law. What

wavelength do you expect for Co Ka, radiation? 1
What symmetry elements do the following tetrahedral-shaped molecules }
possess: (a) CH,Cl, (b) CH,Cl,, (c) CH,CIBr? _

Show that the following Bravais lattices are equivalent:
(a) C-tetragonal and P-tetragonal

(b) F-tetragonal and I-tetragonal .

(¢) B-monoclinic and P-monoclinic (b unique ax‘ls)

(d) C-monoclinic and I-monoclinic (b unique axis) .
What is the probable lattice type of crystalline substances that give the i
following observed reflections? ‘
(a) 110, 200, 103, 202, 211

(b) 111, 200, 113, 220, 222

(c) 100, 110, 111, 200, 210

(d) 001, 110, 200, ti1, 201 '

Calculate the 260 and d values for the first five lines in the X-ray powder
pattern, Cu Ka radiation, of a primitive cubic substance with a=5.0A
What is the multiplicity of each line? ‘

At 20°C, Fe is body centred cubic, Z =2,a= 2.866 A. At 950°C, Fe is facg
centred cubic, Z=4, a= 3.656A. At 1425°C, Fe is again body cet_ltred
cubic, Z =2, a=2.940A. At each temperature, calculate (a) the density of
iron, (b) the metallic radius of iron atoms. ;
The value of nin Bragg’s Law is always set equal to 1. What happens to the
higher order diffraction peaks? . .
Silver oxide, Ag,0, has a cubic unit cell, Z =2, with atomic .coordl.nates A .'
111 331 313 133.(3:(00,111 What are the atomic coordinates if the unit |
444°444>444°444> 2222 R | . b
cell is displaced so that an Ag atom is at the origin? What is the lattice type of 1
Ag,0? What is the coordination number of Ag and O? Does the structure j

possess a centre of symmetry?

5.2
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5.9 Acubicalkali halide has its first six lines with d-spacing 4.08, 3.53, 2.50, 2.13,
2.04 and 1.77A. Assign Miller indices to the lines and calculate the value of
the unit cell dimension. The alkali halide has density 3.126 gem ~ 3, Identify
the alkali halide. '

5.10 Animaginary orthorhombic crystal has two atoms of the same kind per unit
cell located at 000 and 330. Derive a simplified structure factor equation for
this. Hence, show that, for a C-centred lattice, the condition for reflection is
hkl: h + k =2n.

5.11 Derive a simplified structure factor master equation for the perovskite
structure of SrTiO;. Atomic coordinates are Sr: $34; Ti: 000; O: 100, 040,
004.

5.12 The 111 reflection in the powder pattern of KCl has zero intensity but in the
powder pattern of KF it is fairly strong. Explain.

5.13 The alloy gold—copper has a face centred cubic unit cell at high tempera-
tures in which the Au, Cu atoms are distributed at random over the
available corner and face centre sites. At lower temperatures, ordering
occurs: Cu atoms are located preferentially on the corner sites and one pair
of face centre sites; Au atoms are located on the other two pairs of face centre
sites. What effects would you expect this ordering process to have on the X-
ray powder pattern? :

5.14 The X-ray powder pattern of orthorhombic Li,PdO, includes the following
lines: 4.68 A (002),3.47A (101),2.084 A (112). Calculate the values of the unit
cell parameters. The density is 4.87 gecm ™ 3; what are the cell contents?

5.15 An ammonium halide, NH X, has the CsCl structure at room temperature,
a=4.059A, and transforms to the NaCl structure at 138°C, a = 6.867 A.
(a) The density of the room temperature polymorph is 2.431 gcm™.

Identify the substance.

(b) Calculate the d-spacings of the first four lines in the powder pattern of
each polymorph.

(c) Calculate the percentage difference in molar volume between the
two polymorphs, ignoring thermal expansion effects.

(d) Assuming an effective radius of 1.50 A for the spherical NH; ion and
that anions and cations are in contact, calculate the radius of the anion
in each structure. Are the anions in contact in the two structures?

5.16 ‘Each crystalline solid gives a characteristic X-ray powder diffraction
pattern which may be used as a fingerprint for its identification.’ Discuss the
reasons for the validity of this statement and indicate why two solids with
similar structures, e.g. NaCland NaF, may be distinguished by their powder
patterns.

5.17 Show by means of qualitative sketches the essential differences between the
X-ray powder diffraction patterns of (a) a 1:1 mechanical mixture of
powders of NaCl and AgCl and (b) a sample of (a) that has been heated to
produce a homogeneous solid solution.

5.18 A sample of aluminium hydroxide was shown by chemical analysis to
contain a few per cent of Fe** ions as impurity. What effect, if any, would





